神经网络:池化层

  1. 神经网络 池化操作

    下采样:减少特征数量

    先看池化操作:

    其中ceil_mode设置成True和False池化区别:

    在这个例子当中:ceil_mode=True表示边缘不满3x3的部分也会被池化,False表示边缘不满3x3的部分不会采样

    code:

    python 复制代码
    import torch
    from torch import nn
    from torch.nn import MaxPool2d
    
    input = torch.tensor([[1,2,0,3,1],
                          [0,1,2,3,1],
                          [1,2,1,0,0],
                          [5,2,3,1,1],
                          [2,1,0,1,1]
    ],dtype = torch.float32)
    #这里dtype为float是因为maxpool2d只能处理float类型的数据
    
    input = torch.reshape(input,(-1,1,5,5))
    print(input.shape)
    
    class Net(nn.Module):
        def __init__(self):
            super(Net,self).__init__()
            #ceil_mode=True表示边缘不满3x3的部分也会被池化
            #kernel_size=3 默认是卷积核的大小
            self.maxpool1 = MaxPool2d(kernel_size=3,ceil_mode=True)
            self.maxpool2 = MaxPool2d(kernel_size=3,ceil_mode=False)
    
        def forward(self,input):
            #output = self.maxpool1(input)
            output = self.maxpool2(input)
            return output
    
    net = Net()
    output = net(input)
    print(output)

    ceil_mode=True:

    ceil_mode=False:

  2. 神经网络 池化层

    这里需要先看这篇博客:

https://blog.csdn.net/whdehcy/article/details/149486555?fromshare=blogdetail\&sharetype=blogdetail\&sharerId=149486555\&sharerefer=PC\&sharesource=whdehcy\&sharefrom=from_link

是讲卷积层的

现在将上一步的卷积得到的特征图作为池化的输入

python 复制代码
    pool_output = poolnet(conv_output)
    writer.add_images('pool_output',pool_output,cnt)

只需要添加一下池化的操作

python 复制代码
class poolNet(nn.Module):
    def __init__(self):
        super(poolNet,self).__init__()
        #ceil_mode=True表示边缘不满3x3的部分也会被池化
        #kernel_size=3 默认是卷积核的大小
        self.maxpool1 = MaxPool2d(kernel_size=3,ceil_mode=True)
        self.maxpool2 = MaxPool2d(kernel_size=3,ceil_mode=False)

    def forward(self,input):
        output = self.maxpool1(input)
        #output = self.maxpool2(input)
        return output

poolnet = poolNet()

完整版代码:

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision.datasets import ImageFolder
from torchvision import transforms

#数据预处理
transform = transforms.Compose([
    transforms.Resize((224,224)),
    transforms.ToTensor(),
    transforms.Normalize(
        mean = [0.5,0.5,0.5],
        std = [0.5,0.5,0.5]
    )
])

#加载数据集
folder_path = '../images'
dataset = ImageFolder(folder_path,transform=transform)
dataloader = DataLoader(dataset,batch_size=1)

#卷积
class convNet(nn.Module):
    def __init__(self):
        #调用父类nn.Module的构造函数
        super(convNet,self).__init__()
        self.conv1 = Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)

    def forward(self,x):
        x = self.conv1(x)
        return x

convnet = convNet()

#池化
class poolNet(nn.Module):
    def __init__(self):
        super(poolNet,self).__init__()
        #ceil_mode=True表示边缘不满3x3的部分也会被池化
        #kernel_size=3 默认是卷积核的大小
        self.maxpool1 = MaxPool2d(kernel_size=3,ceil_mode=True)
        self.maxpool2 = MaxPool2d(kernel_size=3,ceil_mode=False)

    def forward(self,input):
        output = self.maxpool1(input)
        #output = self.maxpool2(input)
        return output

poolnet = poolNet()

writer = SummaryWriter('../logs')

cnt = 0
for data in dataloader:
    img,label = data
    print(img.shape)
    conv_output = convnet(img)
    print(conv_output.shape)
    writer.add_images('input',img,cnt)
    conv_output = torch.reshape(conv_output,(-1,3,222,222))
    writer.add_images('conv_output',conv_output,cnt)
    pool_output = poolnet(conv_output)
    writer.add_images('pool_output',pool_output,cnt)
    cnt = cnt + 1

writer.close()

卷积:

池化:

相关推荐
Ray Song几秒前
自动驾驶数据闭环
人工智能·机器学习·自动驾驶·数据闭环
小五1272 分钟前
数据科学与计算实例应用
开发语言·python
aneasystone本尊11 分钟前
学习 Coze Studio 的智能体会话接口
人工智能
站大爷IP12 分钟前
Python类型注解:让代码“开口说话”的隐形助手
python
高效匠人19 分钟前
能力评估:如何系统评估你的技能和经验
人工智能
小马敲马32 分钟前
[4.2-2] NCCL新版本的register如何实现的?
开发语言·c++·人工智能·算法·性能优化·nccl
阿里云大数据AI技术34 分钟前
【新模型速递】PAI-Model Gallery云上一键部署gpt-oss系列模型
人工智能·gpt·llm
martinzh36 分钟前
AI智能体如何从错误中学习:反思机制详解
人工智能
站大爷IP39 分钟前
Python多态实战:从基础到高阶的“魔法”应用指南
python