神经网络:池化层

  1. 神经网络 池化操作

    下采样:减少特征数量

    先看池化操作:

    其中ceil_mode设置成True和False池化区别:

    在这个例子当中:ceil_mode=True表示边缘不满3x3的部分也会被池化,False表示边缘不满3x3的部分不会采样

    code:

    python 复制代码
    import torch
    from torch import nn
    from torch.nn import MaxPool2d
    
    input = torch.tensor([[1,2,0,3,1],
                          [0,1,2,3,1],
                          [1,2,1,0,0],
                          [5,2,3,1,1],
                          [2,1,0,1,1]
    ],dtype = torch.float32)
    #这里dtype为float是因为maxpool2d只能处理float类型的数据
    
    input = torch.reshape(input,(-1,1,5,5))
    print(input.shape)
    
    class Net(nn.Module):
        def __init__(self):
            super(Net,self).__init__()
            #ceil_mode=True表示边缘不满3x3的部分也会被池化
            #kernel_size=3 默认是卷积核的大小
            self.maxpool1 = MaxPool2d(kernel_size=3,ceil_mode=True)
            self.maxpool2 = MaxPool2d(kernel_size=3,ceil_mode=False)
    
        def forward(self,input):
            #output = self.maxpool1(input)
            output = self.maxpool2(input)
            return output
    
    net = Net()
    output = net(input)
    print(output)

    ceil_mode=True:

    ceil_mode=False:

  2. 神经网络 池化层

    这里需要先看这篇博客:

https://blog.csdn.net/whdehcy/article/details/149486555?fromshare=blogdetail\&sharetype=blogdetail\&sharerId=149486555\&sharerefer=PC\&sharesource=whdehcy\&sharefrom=from_link

是讲卷积层的

现在将上一步的卷积得到的特征图作为池化的输入

python 复制代码
    pool_output = poolnet(conv_output)
    writer.add_images('pool_output',pool_output,cnt)

只需要添加一下池化的操作

python 复制代码
class poolNet(nn.Module):
    def __init__(self):
        super(poolNet,self).__init__()
        #ceil_mode=True表示边缘不满3x3的部分也会被池化
        #kernel_size=3 默认是卷积核的大小
        self.maxpool1 = MaxPool2d(kernel_size=3,ceil_mode=True)
        self.maxpool2 = MaxPool2d(kernel_size=3,ceil_mode=False)

    def forward(self,input):
        output = self.maxpool1(input)
        #output = self.maxpool2(input)
        return output

poolnet = poolNet()

完整版代码:

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision.datasets import ImageFolder
from torchvision import transforms

#数据预处理
transform = transforms.Compose([
    transforms.Resize((224,224)),
    transforms.ToTensor(),
    transforms.Normalize(
        mean = [0.5,0.5,0.5],
        std = [0.5,0.5,0.5]
    )
])

#加载数据集
folder_path = '../images'
dataset = ImageFolder(folder_path,transform=transform)
dataloader = DataLoader(dataset,batch_size=1)

#卷积
class convNet(nn.Module):
    def __init__(self):
        #调用父类nn.Module的构造函数
        super(convNet,self).__init__()
        self.conv1 = Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)

    def forward(self,x):
        x = self.conv1(x)
        return x

convnet = convNet()

#池化
class poolNet(nn.Module):
    def __init__(self):
        super(poolNet,self).__init__()
        #ceil_mode=True表示边缘不满3x3的部分也会被池化
        #kernel_size=3 默认是卷积核的大小
        self.maxpool1 = MaxPool2d(kernel_size=3,ceil_mode=True)
        self.maxpool2 = MaxPool2d(kernel_size=3,ceil_mode=False)

    def forward(self,input):
        output = self.maxpool1(input)
        #output = self.maxpool2(input)
        return output

poolnet = poolNet()

writer = SummaryWriter('../logs')

cnt = 0
for data in dataloader:
    img,label = data
    print(img.shape)
    conv_output = convnet(img)
    print(conv_output.shape)
    writer.add_images('input',img,cnt)
    conv_output = torch.reshape(conv_output,(-1,3,222,222))
    writer.add_images('conv_output',conv_output,cnt)
    pool_output = poolnet(conv_output)
    writer.add_images('pool_output',pool_output,cnt)
    cnt = cnt + 1

writer.close()

卷积:

池化:

相关推荐
机器之心18 小时前
NeurIPS 2025:高分论文也可能被拒,只为保住那25%左右的接收率?
人工智能·openai
余衫马18 小时前
ModelScope 开发环境配置指南
人工智能
这里有鱼汤18 小时前
量化小白必看|MiniQMT踩坑记:想做实盘这些知识请你一定要掌握
后端·python
aneasystone本尊18 小时前
GraphRAG 索引构建之知识提取(三)
人工智能
数据小子21418 小时前
【自记】Python 中 nonlocal 和 global 的区别,以及闭包的作用和示例
python
WSSWWWSSW18 小时前
Python OpenCV图像处理与深度学习:Python OpenCV视频处理入门
图像处理·python·opencv
前端双越老师18 小时前
AI 编程实践 VSCode + Copilot 从 0 开发 Chatbot 页面
人工智能·agent·ai编程
胖墩会武术18 小时前
【PyTorch项目实战】SAM(Segment Anything Model) —— 致力于建立第一个图像分割基础模型
人工智能·pytorch·python·sam
度假的小鱼18 小时前
004 解构 NLP 框架体系:从经典工具到新一代技术方案
人工智能·自然语言处理
Hy行者勇哥18 小时前
生成知识图谱与技能树的工具指南:PlantUML、Mermaid 和 D3.js
javascript·人工智能·知识图谱