【VASP】VASP 机器学习力场(MLFF)实战

机器学习加速AIMD模拟

用 VASP 训练液态硅的机器学习力场 | 全流程速通笔记

原文链接:VASP 官网例子:机器学习势的生成与应用

作者:VASP 官方教程 & 知乎搬运

CSDN 整理发布:@YourName

日期:2025-07-21


1. 背景速览

  • 目标 :为液态硅(Liquid Si)训练一个即时机器学习力场(on-the-fly MLFF)。
  • 套路
    1. 先做短时间 AIMD 把晶体硅熔化,同时边跑边训 ML 势;
    2. 用训好的 ML 势跑纯机器学习 MD
    3. 与"纯 AIMD"轨迹对比验证精度。

2. 实操

AIMD 熔硅 + 即时训练

  1. 初始结构

    64-atom 晶体硅超胞 → 2000 K 熔化(30 ps,10 000 步)。

  2. 关键 INCAR

ini 复制代码
# 基础
ISMEAR = 0 ; SIGMA = 0.1 ; LREAL = Auto
ISYM = -1 ; NELM = 100 ; EDIFF = 1E-4
LWAVE = .FALSE. ; LCHARG = .FALSE.

# 并行
NCORE = 2

# MD
IBRION = 0 ; MDALGO = 2 ; ISIF = 2
SMASS = 1.0 ; TEBEG = 2000 ; POTIM = 3.0
NSW = 10000
RANDOM_SEED = 88951986 0 0

# 机器学习开关
ML_LMLFF = .TRUE.
ML_ISTART = 0

输出文件与结果验证

机器学习运行后生成的关键文件

文件名 作用说明 后续用法
ML_ABN 训练数据集,含结构-能量-力-应力等第一性原理结果 cp ML_ABN ML_AB
ML_FFN 机器学习势参数(权重、截断半径、基函数系数等) cp ML_FFN ML_FF
ML_LOGFILE 训练日志,可查看每一步新增结构数、力/能量误差、训练耗时等 grep 或文本编辑器查阅

提示

如果想继续迭代提高精度,可把 ML_ABN 重命名为 ML_AB,在下一次计算中作为初始数据集,再配合 ML_ISTART = 1 继续训练。


结果验证:径向分布函数

处理轨迹

无论采用纯 ML-MD 还是纯 AIMD,都会得到 XDATCAR 轨迹文件。

相关推荐
vvoennvv26 分钟前
【Python TensorFlow】 TCN-GRU时间序列卷积门控循环神经网络时序预测算法(附代码)
python·rnn·神经网络·机器学习·gru·tensorflow·tcn
YJlio36 分钟前
[编程达人挑战赛] 用 PowerShell 写了一个“电脑一键初始化脚本”:从混乱到可复制的开发环境
数据库·人工智能·电脑
玦尘、1 小时前
《统计学习方法》第4章——朴素贝叶斯法【学习笔记】
笔记·机器学习
RoboWizard1 小时前
PCIe 5.0 SSD有无独立缓存对性能影响大吗?Kingston FURY Renegade G5!
人工智能·缓存·电脑·金士顿
霍格沃兹测试开发学社-小明1 小时前
测试左移2.0:在开发周期前端筑起质量防线
前端·javascript·网络·人工智能·测试工具·easyui
懒麻蛇1 小时前
从矩阵相关到矩阵回归:曼特尔检验与 MRQAP
人工智能·线性代数·矩阵·数据挖掘·回归
xwill*1 小时前
RDT-1B: A DIFFUSION FOUNDATION MODEL FOR BIMANUAL MANIPULATION
人工智能·pytorch·python·深度学习
网安INF1 小时前
机器学习入门:深入理解线性回归
人工智能·机器学习·线性回归
陈奕昆1 小时前
n8n实战营Day2课时2:Loop+Merge节点进阶·Excel批量校验实操
人工智能·python·excel·n8n
程序猿追1 小时前
PyTorch算子模板库技术解读:无缝衔接PyTorch模型与Ascend硬件的桥梁
人工智能·pytorch·python·深度学习·机器学习