【VASP】VASP 机器学习力场(MLFF)实战

机器学习加速AIMD模拟

用 VASP 训练液态硅的机器学习力场 | 全流程速通笔记

原文链接:VASP 官网例子:机器学习势的生成与应用

作者:VASP 官方教程 & 知乎搬运

CSDN 整理发布:@YourName

日期:2025-07-21


1. 背景速览

  • 目标 :为液态硅(Liquid Si)训练一个即时机器学习力场(on-the-fly MLFF)。
  • 套路
    1. 先做短时间 AIMD 把晶体硅熔化,同时边跑边训 ML 势;
    2. 用训好的 ML 势跑纯机器学习 MD
    3. 与"纯 AIMD"轨迹对比验证精度。

2. 实操

AIMD 熔硅 + 即时训练

  1. 初始结构

    64-atom 晶体硅超胞 → 2000 K 熔化(30 ps,10 000 步)。

  2. 关键 INCAR

ini 复制代码
# 基础
ISMEAR = 0 ; SIGMA = 0.1 ; LREAL = Auto
ISYM = -1 ; NELM = 100 ; EDIFF = 1E-4
LWAVE = .FALSE. ; LCHARG = .FALSE.

# 并行
NCORE = 2

# MD
IBRION = 0 ; MDALGO = 2 ; ISIF = 2
SMASS = 1.0 ; TEBEG = 2000 ; POTIM = 3.0
NSW = 10000
RANDOM_SEED = 88951986 0 0

# 机器学习开关
ML_LMLFF = .TRUE.
ML_ISTART = 0

输出文件与结果验证

机器学习运行后生成的关键文件

文件名 作用说明 后续用法
ML_ABN 训练数据集,含结构-能量-力-应力等第一性原理结果 cp ML_ABN ML_AB
ML_FFN 机器学习势参数(权重、截断半径、基函数系数等) cp ML_FFN ML_FF
ML_LOGFILE 训练日志,可查看每一步新增结构数、力/能量误差、训练耗时等 grep 或文本编辑器查阅

提示

如果想继续迭代提高精度,可把 ML_ABN 重命名为 ML_AB,在下一次计算中作为初始数据集,再配合 ML_ISTART = 1 继续训练。


结果验证:径向分布函数

处理轨迹

无论采用纯 ML-MD 还是纯 AIMD,都会得到 XDATCAR 轨迹文件。

相关推荐
songyuc2 分钟前
《A Bilateral CFAR Algorithm for Ship Detection in SAR Images》译读笔记
人工智能·笔记·计算机视觉
码界奇点19 分钟前
解密AI语言模型从原理到应用的全景解析
人工智能·语言模型·自然语言处理·架构
余衫马24 分钟前
你好,未来:零基础看懂大语言模型
人工智能·语言模型·自然语言处理·智能体
pingao14137825 分钟前
冰雪环境无忧测:冬季加热激光雪深监测站保障道路安全与气象研究
人工智能·安全
AndrewHZ32 分钟前
【图像处理基石】提升图像通透感:从原理到实操的完整指南
图像处理·人工智能·计算机视觉·cv·对比度·动态范围·通透感
草莓熊Lotso41 分钟前
C++ 方向 Web 自动化测试实战:以博客系统为例,从用例到报告全流程解析
前端·网络·c++·人工智能·后端·python·功能测试
星释1 小时前
Rust 练习册 :Phone Number与电话号码处理
开发语言·机器学习·rust
劲墨难解苍生苦1 小时前
spring ai alibaba mcp 开发demo
java·人工智能
程序员霸哥哥1 小时前
从零搭建PyTorch计算机视觉模型
人工智能·pytorch·python·计算机视觉
草莓熊Lotso2 小时前
Linux 基础开发工具入门:软件包管理器的全方位实操指南
linux·运维·服务器·c++·人工智能·网络协议·rpc