【VASP】VASP 机器学习力场(MLFF)实战

机器学习加速AIMD模拟

用 VASP 训练液态硅的机器学习力场 | 全流程速通笔记

原文链接:VASP 官网例子:机器学习势的生成与应用

作者:VASP 官方教程 & 知乎搬运

CSDN 整理发布:@YourName

日期:2025-07-21


1. 背景速览

  • 目标 :为液态硅(Liquid Si)训练一个即时机器学习力场(on-the-fly MLFF)。
  • 套路
    1. 先做短时间 AIMD 把晶体硅熔化,同时边跑边训 ML 势;
    2. 用训好的 ML 势跑纯机器学习 MD
    3. 与"纯 AIMD"轨迹对比验证精度。

2. 实操

AIMD 熔硅 + 即时训练

  1. 初始结构

    64-atom 晶体硅超胞 → 2000 K 熔化(30 ps,10 000 步)。

  2. 关键 INCAR

ini 复制代码
# 基础
ISMEAR = 0 ; SIGMA = 0.1 ; LREAL = Auto
ISYM = -1 ; NELM = 100 ; EDIFF = 1E-4
LWAVE = .FALSE. ; LCHARG = .FALSE.

# 并行
NCORE = 2

# MD
IBRION = 0 ; MDALGO = 2 ; ISIF = 2
SMASS = 1.0 ; TEBEG = 2000 ; POTIM = 3.0
NSW = 10000
RANDOM_SEED = 88951986 0 0

# 机器学习开关
ML_LMLFF = .TRUE.
ML_ISTART = 0

输出文件与结果验证

机器学习运行后生成的关键文件

文件名 作用说明 后续用法
ML_ABN 训练数据集,含结构-能量-力-应力等第一性原理结果 cp ML_ABN ML_AB
ML_FFN 机器学习势参数(权重、截断半径、基函数系数等) cp ML_FFN ML_FF
ML_LOGFILE 训练日志,可查看每一步新增结构数、力/能量误差、训练耗时等 grep 或文本编辑器查阅

提示

如果想继续迭代提高精度,可把 ML_ABN 重命名为 ML_AB,在下一次计算中作为初始数据集,再配合 ML_ISTART = 1 继续训练。


结果验证:径向分布函数

处理轨迹

无论采用纯 ML-MD 还是纯 AIMD,都会得到 XDATCAR 轨迹文件。

相关推荐
لا معنى له14 小时前
目标检测的内涵、发展和经典模型--学习笔记
人工智能·笔记·深度学习·学习·目标检测·机器学习
AKAMAI15 小时前
Akamai Cloud客户案例 | CloudMinister借助Akamai实现多云转型
人工智能·云计算
小a杰.17 小时前
Flutter 与 AI 深度集成指南:从基础实现到高级应用
人工智能·flutter
colorknight17 小时前
数据编织-异构数据存储的自动化治理
数据仓库·人工智能·数据治理·数据湖·数据科学·数据编织·自动化治理
Lun3866buzha17 小时前
篮球场景目标检测与定位_YOLO11-RFPN实现详解
人工智能·目标检测·计算机视觉
janefir18 小时前
LangChain框架下DirectoryLoader使用报错zipfile.BadZipFile
人工智能·langchain
齐齐大魔王18 小时前
COCO 数据集
人工智能·机器学习
AI营销实验室19 小时前
原圈科技AI CRM系统赋能销售新未来,行业应用与创新点评
人工智能·科技
爱笑的眼睛1119 小时前
超越MSE与交叉熵:深度解析损失函数的动态本质与高阶设计
java·人工智能·python·ai
tap.AI19 小时前
RAG系列(一) 架构基础与原理
人工智能·架构