【langchain】3分钟构建一个上下文聊天机器人

langchain架构已有记忆功能,本文将简单介绍一下如何构建一个带有记忆功能的机器人

首先导入需要的包

python 复制代码
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_community.chat_message_histories import SQLChatMessageHistory
from langchain_core.runnables.history import RunnableWithMessageHistory

定义llm的基础设置

模型名和apikey

python 复制代码
llm = ChatOpenAI(model = ,apikey=)

创建prompt词

MessagesPlaceholder(variable_name="history"),是占位符,为了导入完整的历史记录

python 复制代码
prompt = ChatPromptTemplate(
	[
		("system", "你是一个得力的助手"),
         MessagesPlaceholder(variable_name="history"),
         ("human", "{question}"),
	]
)

创建chain

| 是 LangChain 的"链式操作符"(pipe operator),类似于 Unix 的管道(pipe)。它将 prompt 的输出"管道"到 llm 的输入,形成一个"链"。

这个链的执行流程是:用户输入 → 填充提示模板 → 发送给 LLM 生成回复。目的:简化调用,只需 chain.invoke(input) 就能运行整个流程。如果不链式连接,你需要手动填充提示再调用模型。

python 复制代码
chain = prompt| llm

RunnableWithMessageHistory 是 LangChain 的高级 Runnable 类,用于包装普通链(chain),添加历史管理功能。参数:

chain:要包装的链。

lambda session_id: SQLChatMessageHistory(...):一个 lambda 函数(匿名函数),根据 session_id 创建历史存储器。SQLChatMessageHistory 是存储类,

connection_string="sqlite:///chat_history.db" 指定使用本地 SQLite 数据库(文件会自动创建在项目根目录)。

input_messages_key="question":输入字典中,用户消息的键名(匹配提示模板中的 {question})。LangChain 会从这个键提取用户消息,并注入到提示模板中。目的:标准化输入格式。简单语法,无需额外解释。

history_messages_key="history":历史消息在提示中的占位符键名(匹配 MessagesPlaceholder("history"))

python 复制代码
	chain_with_history = RunnableWithMessageHistory(
            chain,
            lambda session_id: SQLChatMessageHistory(
                session_id=session_id, connection_string="sqlite:///chat_history.db"
            ),
            input_messages_key="question",
            history_messages_key="history",
        )

至此为止,我们就创建了完整的流程,那么我们接下来怎么了进行交流呢

我们使用invoke方法,由于我们是带有历史记录的,所以需要指定一个config。里面需要包括一个config文件

python 复制代码
response = self.chain_with_history.invoke(
            {"question": text},
            config={"configurable": {"session_id": session_id}}
        )
        
        response_text = response.content

参考文档:langchain

相关推荐
紧固件研究社几秒前
2026第十六届上海紧固件专业展|洞察紧固件升级新方向
大数据·人工智能·制造·紧固件·上海紧固件展·上海紧固件专业展
2301_76444133几秒前
基于Genos模型的基因序列分析应用
人工智能·python
分享牛3 分钟前
LangChain4j从入门到精通-11-结构化输出
后端·python·flask
花间相见5 分钟前
【AI开发】—— OpenCode双插件协同开发指南
人工智能
2501_941652778 分钟前
基于DETR模型的棉花品种识别与分类检测研究_r50_8xb2-150e_coco数据集训练
人工智能·数据挖掘
EriccoShaanxi13 分钟前
高性价比组合导航:智慧导航,无界探索
机器人·无人机
gentle coder14 分钟前
【langchain】AI应用开发框架
langchain·llm·rag
Elastic 中国社区官方博客16 分钟前
金融服务公司如何大规模构建上下文智能
大数据·人工智能·elasticsearch·搜索引擎·ai·金融·全文检索
无人装备硬件开发爱好者22 分钟前
RV1126B 边缘端 AI 实战:YOLOv8+DNTR 微小目标跟踪监测全栈实现 1
人工智能·yolo·目标跟踪
新缸中之脑25 分钟前
为AI代理设计分层记忆
人工智能