Leetcode 3624. Number of Integers With Popcount-Depth Equal to K II

  • [Leetcode 3624. Number of Integers With Popcount-Depth Equal to K II](#Leetcode 3624. Number of Integers With Popcount-Depth Equal to K II)
    • [1. 解题思路](#1. 解题思路)
    • [2. 代码实现](#2. 代码实现)

1. 解题思路

这一题就是一个segment tree的变体,唯一的区别在于其操作不同于一般的简单求和或者求最大最小值,而是返回一个合并后的Counter即可。

而关于segment tree的相关内容,网络上实在是有很多了,我自己反正也有一篇博客《经典算法:Segment Tree》作为备忘,这里就不过多展开了,有兴趣的读者自己查查了解下即可。

2. 代码实现

给出python代码实现如下:

python 复制代码
class SegmentTree:
    def __init__(self, arr):
        self.length = len(arr)
        self.tree = self.build(arr)

    def feature_func(self, *args):
        ret = defaultdict(int)
        for cnt in args:
            for k, v in cnt.items():
                ret[k] += v
        return ret

    def build(self, arr):
        n = len(arr)
        tree = [defaultdict(int) for _ in range(2*n)]
        for i in range(n):
            tree[i+n][arr[i]] += 1
        for i in range(n-1, 0, -1):
            tree[i] = self.feature_func(tree[i<<1], tree[(i<<1) | 1])
        return tree

    def update(self, idx, val):
        idx = idx + self.length
        self.tree[idx] = defaultdict(int)
        self.tree[idx][val] += 1
        while idx > 1:
            self.tree[idx>>1] = self.feature_func(self.tree[idx], self.tree[idx ^ 1])
            idx = idx>>1
        return

    def query(self, lb, rb):
        lb += self.length 
        rb += self.length
        nodes = []
        while lb < rb:
            if lb & 1 == 1:
                nodes.append(self.tree[lb])
                lb += 1
            if rb & 1 == 0:
                nodes.append(self.tree[rb])
                rb -= 1
            lb = lb >> 1
            rb = rb >> 1
        if lb == rb:
            nodes.append(self.tree[rb])
        return self.feature_func(*nodes)

class Solution:
    def popcountDepth(self, nums: List[int], queries: List[List[int]]) -> List[int]:
        
        def fn(num):
            if num == 1:
                return 0
            num = Counter(bin(num)[2:])["1"]
            return 1 + fn(num)

        nums = [fn(num) for num in nums]
        segment_tree = SegmentTree(nums)
        ans = []
        for query in queries:
            if len(query) == 3:
                _, idx, val = query
                segment_tree.update(idx, fn(val))
            else:
                _, l, r, k = query
                cnt = segment_tree.query(l, r)
                ans.append(cnt[k])
        return ans

提交代码评测得到:耗时6716ms,占用内存94.28MB。

相关推荐
Espresso Macchiato8 天前
Leetcode 3729. Count Distinct Subarrays Divisible by K in Sorted Array
leetcode·leetcode hard·容斥原理·leetcode 3729·leetcode周赛473·前序和数组
Espresso Macchiato19 天前
Leetcode 3715. Sum of Perfect Square Ancestors
算法·leetcode·职场和发展·leetcode hard·树的遍历·leetcode 3715·leetcode周赛471
Espresso Macchiato23 天前
Leetcode 3710. Maximum Partition Factor
leetcode·职场和发展·广度优先遍历·二分法·leetcode hard·leetcode 3710·leetcode双周赛167
Espresso Macchiato1 个月前
Leetcode 3700. Number of ZigZag Arrays II
动态规划·leetcode hard·矩阵乘法·leetcode 3700·leetcode周赛469
Espresso Macchiato1 个月前
Leetcode 3695. Maximize Alternating Sum Using Swaps
并查集·leetcode hard·dsu·uf·leetcode 3695·leetcode双周赛166
Espresso Macchiato5 个月前
Leetcode 3563. Lexicographically Smallest String After Adjacent Removals
动态规划·leetcode hard·leetcode周赛451·leetcode 3563
Espresso Macchiato5 个月前
Leetcode 3562. Maximum Profit from Trading Stocks with Discounts
动态规划·背包问题·leetcode hard·leetcode 3562·leetcode周赛451
Espresso Macchiato6 个月前
Leetcode 3530. Maximum Profit from Valid Topological Order in DAG
动态规划·leetcode hard·拓扑序列·leetcode 3530·leetcode双周赛155
Espresso Macchiato7 个月前
Leetcode 3500. Minimum Cost to Divide Array Into Subarrays
leetcode·动态规划·leetcode hard·leetcode 3500·leetcode双周赛153