机器学习/归一化

概念:使用不同规格的数据转换到统一格式。默认范围区间为[0,1]。

公式:

代码实现:

MinMaxScaler是一个类

归一化的作用:

优点一:可以提升模型的收敛速度。采用梯度下降法求解时,归一化后优化形状变为圆形,梯度方向直指圆心,迭代速度变快,大大减少寻找最优解的时间。

优点二:提升模型精度。涉及到距离计算时,数量级小的特征对结果的影响远远小于数量级大的特征,对精度造成损失,归一化可以使各个特征对结果做出的贡献相同。

适应场景:

最大值与最小值非常容易受异常点影响,所以这种方法鲁棒性较差,只适合传统精确小数据场景

相关推荐
youzj092526 分钟前
docker网站配置
python
mwq3012334 分钟前
位置编码的技术演进线路:从绝对到相对,再到几何一致性
人工智能
mwq3012342 分钟前
外推性-位置编码的阿喀琉斯之踵
人工智能
snowfoootball44 分钟前
python函数及面向过程高级特性
开发语言·python
DP+GISer1 小时前
基于站点数据进行遥感机器学习参数反演-以XGBOOST反演LST为例(附带数据与代码)试读
人工智能·python·机器学习·遥感与机器学习
boonya1 小时前
Langchain 和LangGraph 为何是AI智能体开发的核心技术
人工智能·langchain
元宇宙时间1 小时前
DID联盟:Web3数字主权基础设施的战略构建
人工智能·web3·区块链
点云SLAM1 小时前
弱纹理图像特征匹配算法推荐汇总
人工智能·深度学习·算法·计算机视觉·机器人·slam·弱纹理图像特征匹配
mwq301231 小时前
旋转位置编码RoPE:用旋转艺术,解开 Transformer 的位置之谜
人工智能
赵得C1 小时前
人工智能的未来之路:华为全栈技术链与AI Agent应用实践
人工智能·华为