【CNN】卷积神经网络多通道卷积与偏置过程- part2

多通道卷积 的核心思想是:对每个通道分别进行卷积,然后把结果加起来。

以彩色图像为例,包含三个通道,分别表示RGB三原色的像素值,输入为(3,5,5),分别表示3个通道,每个通道的宽为5,高为5。假设卷积核只有1个,卷积核通道为3,每个通道的卷积核大小仍为3x3,padding=0,stride=1。

卷积过程如下,每一个通道的像素值与对应的卷积核通道的数值进行卷积,因此每一个通道会对应一个输出卷积结果,三个卷积结果对应位置累加求和,得到最终的卷积结果(这里卷积输出结果通道只有1个,因为卷积核只有1个。卷积多输出通道下面会继续讲到)。

可以这么理解:最终得到的卷积结果是原始图像各个通道上的综合信息结果。

上述过程中,每一个卷积核的通道数量,必须要求与输入通道数量一致,因为要对每一个通道的像素值要进行卷积运算,所以每一个卷积核的通道数量必须要与输入通道数量保持一致

我们把上述图像通道如果放在一块,计算原理过程还是与上面一样,堆叠后的表示如下:

2.单卷积核多通道

我们来看下面的单卷积核多通道卷积的演变过程。

复制代码
import torch
import torch.nn as nn
import numpy as np

matrix_np = np.array([[[[0,1,1],
                       [0,0,1],
                       [0,0,0]],
                       [[0,0,1],
                        [1,0,1],
                        [0,0,0]],
                        [[1,0,1],
                         [1,1,1],
                         [1,0,0]]
                         ]])    

kernel = torch.tensor([
    [
        [1,0],
        [0,0]
    ]
    ,
    [
        [0,1],
        [0,0]
    ]
    ,
    [
        [0,0],
        [1,0]
    ]
], dtype=torch.float32)  

matrix_np = np.array(matrix_np).astype(np.float32)

conv_layer = nn.Conv2d(in_channels=3, out_channels=1, kernel_size=2, stride=1, padding=0,bias=False)

conv_layer.weight.data = kernel.view(1,3,2,2)

output_data = conv_layer(input_data)

print(output_data.shape)
print(torch.round(output_data))

3.多卷积核多通道

复制代码
import torch
import torch.nn as nn
import numpy as np

# 创建一个大小为 28*28 的单通道图像
# input_data = torch.randn(1, 3, 3, 3)  # 一个大小为28x28的单通道图像

# 创建一个 NumPy 数组

matrix_np = np.array([[[[0.0, 1.0, 1.0],
                        [0.0, 0.0, 1.0],
                        [0.0, 0.0, 0.0]]
                          ,
                       [[0.0, 0.0, 1.0],
                        [1.0, 0.0, 1.0],
                        [0.0, 0.0, 0.0]]
                          ,
                       [[1.0, 0.0, 1.0],
                        [1.0, 1.0, 1.0],
                        [1.0, 0.0, 0.0]]
                       ]])

kernel = torch.tensor([
    [
        [
            [1., 0.],
            [0., 0.]
        ]
        ,
        [
            [0., 1.],
            [0., 0.]
        ]
        ,
        [
            [0., 0.],
            [1., 0.]
        ]
    ],
    [
        [
            [1., 0.],
            [0., 0.]
        ]
        ,
        [
            [1., 0.],
            [0., 0.]
        ]
        ,
        [
            [1., 0.],
            [0., 0.]
        ]
    ]

], dtype=torch.float32)

matrix_np = np.array(matrix_np).astype(np.float32)
# 转换为 PyTorch 张量
input_data = torch.from_numpy(matrix_np)

print(input_data)

# 创建卷积层,输入通道数为 3
# 输出通道数1
# 步长默认是1
# 卷积核大小2*2
# 0个0填充
# 默认没有偏置项 bias=False
conv_layer = nn.Conv2d(in_channels=3, out_channels=2, stride=1, kernel_size=2, padding=0, bias=True)
# conv_layer = nn.Conv2d(in_channels=3, out_channels=2, stride=1, kernel_size=2, padding=0, bias=True)

# 手动设置卷积核权重(权重形状:[out_channels, in_channels, height, width])
conv_layer.weight.data = kernel.view(2, 3, 2, 2)

# 手动设置卷积核偏置项(偏置项形状:[out_channels])
# conv_layer.bias.data.fill_(-1.0)
# 对输入数据进行卷积操作
output_data = conv_layer(input_data)

# 输出结果
print(output_data.shape)
print(torch.round(output_data))
相关推荐
饭饭大王66631 分钟前
CANN 生态中的轻量化部署利器:`lite-inference` 项目实战解析
深度学习
MSTcheng.1 小时前
CANN ops-math:AI 硬件端高效数学运算的算子设计与工程化落地方法
人工智能·深度学习·cann
Dev7z1 小时前
基于深度学习的肺部听诊音疾病智能诊断方法研究
人工智能·深度学习
像风一样的男人@2 小时前
python --读取psd文件
开发语言·python·深度学习
大江东去浪淘尽千古风流人物3 小时前
【SLAM新范式】几何主导=》几何+学习+语义+高效表示的融合
深度学习·算法·slam
yuanyuan2o23 小时前
【深度学习】全连接、卷积神经网络
人工智能·深度学习·cnn
汗流浃背了吧,老弟!3 小时前
BPE 词表构建与编解码(英雄联盟-托儿索语料)
人工智能·深度学习
小瑞瑞acd4 小时前
【小瑞瑞精讲】卷积神经网络(CNN):从入门到精通,计算机如何“看”懂世界?
人工智能·python·深度学习·神经网络·机器学习
芷栀夏5 小时前
CANN ops-math:揭秘异构计算架构下数学算子的低延迟高吞吐优化逻辑
人工智能·深度学习·神经网络·cann
孤狼warrior5 小时前
YOLO目标检测 一千字解析yolo最初的摸样 模型下载,数据集构建及模型训练代码
人工智能·python·深度学习·算法·yolo·目标检测·目标跟踪