【调试Bug】网络在训练中输出NaN

首先情况是开始训练正常,网络也在更新,更新后网络就输出了NaN。调试过程:

1. 查看模型权重更新前后的值

复制代码
    print("更新前权重信息:")
    print(f"  权重均值: {fc2.weight.mean().item() if not torch.isnan(fc2.weight.mean()) else 'NaN'}")
    print(f"  最大值: {fc2.weight.max().item() if not torch.isnan(fc2.weight.max()) else 'NaN'}")
    print(f"  最小值: {fc2.weight.min().item() if not torch.isnan(fc2.weight.min()) else 'NaN'}\n")

    权重更新


    print("更新后权重信息:")
    print(f"  权重均值: {fc2.weight.mean().item() if not torch.isnan(fc2.weight.mean()) else 'NaN'}")
    print(f"  最大值: {fc2.weight.max().item() if not torch.isnan(fc2.weight.max()) else 'NaN'}")
    print(f"  最小值: {fc2.weight.min().item() if not torch.isnan(fc2.weight.min()) else 'NaN'}\n")

判断标准

  • 权重 / 偏置的绝对值如果超过1e4,可能导致输出过大。
  • 若训练中权重突然变得极大,说明可能存在梯度爆炸。

2. 发现权重更新前正常,更新后NaN

权重在参数更新后变成了NaN,这说明问题出在反向传播和参数更新环节(梯度计算或优化器步骤导致权重被更新为异常值)。

原因分析:

权重从正常数值突然变成NaN,几乎可以确定是梯度爆炸导致的:

  • 反向传播时计算出的梯度为NaN或极端大值(如1e20),优化器用这些异常梯度更新权重,直接导致权重变成NaN
  • 常见触发点:损失函数计算异常(如NaN损失)、输入数据极端值导致中间激活值爆炸、学习率过高放大梯度影响。

第一步 检查损失函数是否为NaN

如果损失本身输出是NaN,反向传播的梯度必然是NaN,直接导致权重更新异常。在反向传播前检查损失需要。

损失为NaN的常见原因:

  • 损失中包含log(0)(如nn.Softmax输出接近 0 时,torch.log(prob)会趋近于-inf

结果:发现正是损失函数torch.log输出了NaN。

3 解决

限制torch.log的值,NaN的问题得到了解决

相关推荐
逑之23 分钟前
C语言笔记10:sizeof和strlen,指针与数组
c语言·笔记·算法
求梦82027 分钟前
【力扣hot100题】旋转图像(15)
算法·leetcode·职场和发展
工藤学编程1 小时前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅2 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技5 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
C雨后彩虹5 小时前
任务最优调度
java·数据结构·算法·华为·面试
Dxy12393102166 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧7 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)7 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了7 小时前
CNNMNIST
人工智能·深度学习