R study notes[1]

文章目录

  • [introducing to R](#introducing to R)
  • references

introducing to R

  1. R is an integrated suite involved data handling,storage facility,calculations on arrays,tools for data analysis and so on.
  2. running the command R in the terminal of OS can start R software.in R terminal ,to input q() can quit R software.
  3. the R source codes can bet puted together into a file,assuming the name is "source.R", follow with running by source("source.R") in R terminal.
  4. objects() is a R command to show all objects created by the R session survived . call rm() for delete a part of these objects.
r 复制代码
> rm(x)
> objects()
[1] "y"
  1. make a vector is simple,for example, to run the code x<-c(1,2,3,4,5,6,7,4,3,5,8).seq used to generate a sequence like arrange in python.
r 复制代码
> x<-c(1,2,3,4,5,6,7,4,3,5,8)
> y<-seq(1,8,0.2)
> x
 [1] 1 2 3 4 5 6 7 4 3 5 8
> y
 [1] 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0
> 
  1. arrange function in R is used for sorting a data frame by one or more variables,must install the package called as dplyr installed with install.packages("dplyr").
r 复制代码
> mtcars
                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
> arranged_data <- arrange(mtcars, mpg)
> head(arranged_data)
                     mpg cyl disp  hp drat    wt  qsec vs am gear carb
Cadillac Fleetwood  10.4   8  472 205 2.93 5.250 17.98  0  0    3    4
Lincoln Continental 10.4   8  460 215 3.00 5.424 17.82  0  0    3    4
Camaro Z28          13.3   8  350 245 3.73 3.840 15.41  0  0    3    4
Duster 360          14.3   8  360 245 3.21 3.570 15.84  0  0    3    4
Chrysler Imperial   14.7   8  440 230 3.23 5.345 17.42  0  0    3    4
Maserati Bora       15.0   8  301 335 3.54 3.570 14.60  0  1    5    8
  1. many of compuations can be applied to vector as follows.
r 复制代码
> x
 [1]  1  2  4  2  5  4  3  4  1  4 55 22
> x*8-2
 [1]   6  14  30  14  38  30  22  30   6  30 438 174
 > arranged_data$wt*2
 [1] 10.500 10.848  7.680  7.140 10.690  7.140  7.560  6.870  7.040  6.340  8.140  7.460  6.880  6.920  6.880  6.880  7.690  5.540  5.240  5.750  6.430  5.560  4.930
[24]  4.640  6.300  6.380  4.280  3.870  3.230  3.026  4.400  3.670

references

  1. https://www.r-project.org/
相关推荐
烟锁池塘柳07 分钟前
【R语言】R 语言中打印含有双引号的字符串时会出现 “\” 的原因解析
r语言
全栈开发圈4 天前
干货分享|如何从0到1掌握R语言数据分析
开发语言·数据分析·r语言
小杜的生信筆記7 天前
基于R语言,“上百种机器学习模型”学习教程 | Mime包
开发语言·学习·机器学习·r语言·sci
在打豆豆的小潘学长7 天前
【R语言】多样本单细胞分析_SCTransform+Harmony方案(2)
开发语言·r语言
TS的美梦7 天前
ROGUE: 【张院士团队R包】一种基于熵的用于评估单细胞群体纯度的度量标准
开发语言·r语言
weixin_493202639 天前
R语言代码加密(1)
r语言
Tiger Z9 天前
《R for Data Science (2e)》免费中文翻译 (第3章) --- Data transformation(2)
r语言·数据科学·中文翻译
星石传说11 天前
使用R将nc文件转换为asc文件或者tif文件
r语言·生信
Mister Leon12 天前
机器学习Adaboost算法----SAMME算法和SAMME.R算法
算法·机器学习·r语言
Tiger Z13 天前
R 语言科研绘图第 67 期 --- 箱线图-显著性
r语言·论文·科研·绘图·研究生