aws(学习笔记第五十课) ECS集中练习(2)

文章目录

  • [aws(学习笔记第五十课) ECS集中练习(2)](#aws(学习笔记第五十课) ECS集中练习(2))
  • 学习内容:
    • [1. 代码连接](#1. 代码连接)
      • [1.1 代码链接](#1.1 代码链接)
    • [2. 练习设定`ecs`的`placement`](#2. 练习设定ecsplacement)
      • [2.1 全体架构](#2.1 全体架构)
      • [2.2 全体代码](#2.2 全体代码)
      • [2.3 执行代码](#2.3 执行代码)
      • [2.4 检测`service`的运行实例数](#2.4 检测service的运行实例数)
        • [2.4.1 确认`service`的名字](#2.4.1 确认service的名字)
        • [2.4.2 确认`cluster`的名字](#2.4.2 确认cluster的名字)
        • [2.4.3 使用`cli`确认`service`的运行`count`数](#2.4.3 使用cli确认service的运行count数)
        • [2.4.4 增加`service`的运行`count`数](#2.4.4 增加service的运行count数)
    • [3. 练习设定`ecs`的`network`](#3. 练习设定ecsnetwork)
      • [3.1 全体架构](#3.1 全体架构)
      • [3.2 代码](#3.2 代码)
      • [3.3 执行代码,破碎的心](#3.3 执行代码,破碎的心)
      • [3.4 尝试使用`NetworkMode.HOST`](#3.4 尝试使用NetworkMode.HOST)
        • [3.4.1 代码](#3.4.1 代码)
        • [3.4.2 执行代码](#3.4.2 执行代码)

aws(学习笔记第五十课) ECS集中练习(2)

  • 深入练习设定ecs的其他设定

学习内容:

  • 练习设定ecsplacement
  • 练习设定ecsnetwork

1. 代码连接

1.1 代码链接

ECS集中练习

2. 练习设定ecsplacement

2.1 全体架构

这里对于使用了三种placement

  • PlacementConstaint.distinct_instances : 强制同一个服务的多个任务必须运行在不同的ec2实例上。
  • PlacementStrategy.packed_by : 将任务紧密打包到尽可能少的ec2实例上,有限选择剩余资源最少的可用实例。
  • PlacementStrategy.spread_accross : 将任务均匀分散到不同的可用去(AZ)。

2.2 全体代码

python 复制代码
from aws_cdk import (
    aws_autoscaling as autoscaling,
    aws_ec2 as ec2,
    aws_ecs as ecs,
    App, Stack
)

app = App()
stack = Stack(app, "sample-ecs-task-placement")

# Create a cluster
vpc = ec2.Vpc(
    stack, "Vpc",
    max_azs=2
)

cluster = ecs.Cluster(
    stack, "EcsCluster",
    vpc=vpc
)

asg = autoscaling.AutoScalingGroup(
    stack, "DefaultAutoScalingGroup",
    instance_type=ec2.InstanceType("t2.micro"),
    machine_image=ecs.EcsOptimizedImage.amazon_linux2(),
    vpc=vpc,
)
capacity_provider = ecs.AsgCapacityProvider(stack, "AsgCapacityProvider",
    auto_scaling_group=asg
)
cluster.add_asg_capacity_provider(capacity_provider)

# Create a task definition with placement constraints
task_definition = ecs.Ec2TaskDefinition(
    stack, "TaskDef"
)

container = task_definition.add_container(
    "web",
    image=ecs.ContainerImage.from_registry("nginx:latest"),
    memory_limit_mib=256,
)
port_mapping = ecs.PortMapping(
    container_port=80,
    host_port=8080,
    protocol=ecs.Protocol.TCP
)
container.add_port_mappings(port_mapping)

# Create Service
service = ecs.Ec2Service(
    stack, "Service",
    cluster=cluster,
    task_definition=task_definition,
    placement_constraints=[
        ecs.PlacementConstraint.distinct_instances()
    ]
)

service.add_placement_strategies(
    ecs.PlacementStrategy.packed_by(ecs.BinPackResource.MEMORY))
service.add_placement_strategies(
    ecs.PlacementStrategy.spread_across(
        ecs.BuiltInAttributes.AVAILABILITY_ZONE))
app.synth()

2.3 执行代码

python 复制代码
python -m venv ./.venv
source ./.venv/Scripts/activate
pip install -r requirements.txt
cdk --require-approval never deploy

2.4 检测service的运行实例数

2.4.1 确认service的名字

进入cluster-->service,可以看到选择的部分即为service name

2.4.2 确认cluster的名字

进入cluster,可以看到选择的部分即为cluster name

2.4.3 使用cli确认service的运行count
shell 复制代码
$ aws ecs describe-services \
  --cluster sample-ecs-task-placement-EcsCluster97242B84-UPtLnBUmifKa \
  --services sample-ecs-task-placement-ServiceD69D759B-zq6tlpUpZQBy \
  --query "services[0].runningCount"
1

可以看出,service的执行count数是1,因为在service创建的时候,没有指定desired_count,所以默认是1

2.4.4 增加service的运行count
python 复制代码
service = ecs.Ec2Service(
    stack, "Service",
    cluster=cluster,
    desired_count=2,
    task_definition=task_definition,
    placement_constraints=[
        ecs.PlacementConstraint.distinct_instances()
    ]
)

这里,增加service的属性desired_count=2

3. 练习设定ecsnetwork

3.1 全体架构

3.2 代码

python 复制代码
from aws_cdk import (
    aws_autoscaling as autoscaling,
    aws_ec2 as ec2,
    aws_ecs as ecs,
    App, Stack,
    aws_iam as iam,
)

# Based on https://aws.amazon.com/blogs/compute/introducing-cloud-native-networking-for-ecs-containers/

app = App()
stack = Stack(app, "ec2-service-with-task-networking")

# Create a cluster
vpc = ec2.Vpc(
    stack, "Vpc",
    max_azs=2
)

cluster = ecs.Cluster(
    stack, "awsvpc-ecs-demo-cluster",
    vpc=vpc
)
ecs_role = iam.Role(
    stack, "EcsInstanceRole",
    assumed_by=iam.ServicePrincipal("ec2.amazonaws.com"),
    managed_policies=[
        iam.ManagedPolicy.from_aws_managed_policy_name("service-role/AmazonEC2ContainerServiceforEC2Role")
    ]
)
# 替换 AutoScalingGroup 的启动配置为启动模板
launch_template = ec2.LaunchTemplate(
    stack, "LaunchTemplate",
    instance_type=ec2.InstanceType("t2.micro"),
    machine_image=ecs.EcsOptimizedImage.amazon_linux2(),
    security_group=ec2.SecurityGroup(stack, "SG", vpc=vpc),
    user_data=ec2.UserData.for_linux(),
    role = ecs_role
)

asg = autoscaling.AutoScalingGroup(
    stack, "DefaultAutoScalingGroup",
    launch_template=launch_template,
    vpc=vpc,
    vpc_subnets=ec2.SubnetSelection(subnet_type=ec2.SubnetType.PUBLIC),
)

capacity_provider = ecs.AsgCapacityProvider(stack, "AsgCapacityProvider",
    auto_scaling_group=asg
)
cluster.add_asg_capacity_provider(capacity_provider)

# Create a task definition with its own elastic network interface
task_definition = ecs.Ec2TaskDefinition(
    stack, "nginx-awsvpc",
    network_mode=ecs.NetworkMode.AWS_VPC,
)

web_container = task_definition.add_container(
    "nginx",
    image=ecs.ContainerImage.from_registry("nginx:latest"),
    cpu=100,
    memory_limit_mib=256,
    essential=True
)
port_mapping = ecs.PortMapping(
    container_port=80,
    protocol=ecs.Protocol.TCP
)
web_container.add_port_mappings(port_mapping)

# Create a security group that allows HTTP traffic on port 80 for our
# containers without modifying the security group on the instance
security_group = ec2.SecurityGroup(
    stack, "nginx--7623",
    vpc=vpc,
    allow_all_outbound=False
)
security_group.add_ingress_rule(
    ec2.Peer.any_ipv4(),
    ec2.Port.tcp(80)
)

# Create the service
service = ecs.Ec2Service(
    stack, "awsvpc-ecs-demo-service",
    cluster=cluster,
    task_definition=task_definition,
    security_groups=[security_group]
)

app.synth()

这里,可以为service设定专门的security group,期待执行之后,通过http://{ec2_ip}:80能访问创建的nginx服务。但是事实上心如所愿吗?

3.3 执行代码,破碎的心

执行cdk --require-approval never deploy,之后访问http://{ec2_ip}:80,非常遗憾,不能访问这个网页。

知之为知之,不知ai知。

通过ai,很快知道aws中的ecs ec2下支持两种网络模式。

# 模式 说明 代码注意点
1 HOST host 网络模式(直接通过 EC2 IP 访问) security_group设定在launchTemplate上 allow_all_outbound=True 使用network_mode=ecs.NetworkMode.HOST
2 AWS_VPC awsvpc 模式 + 添加 ALB(推荐生产环境) security_group设定在service上 allow_all_outbound=false 使用network_mode=ecs.NetworkMode.AWS_VPC

3.4 尝试使用NetworkMode.HOST

3.4.1 代码
python 复制代码
from aws_cdk import (
    aws_autoscaling as autoscaling,
    aws_ec2 as ec2,
    aws_ecs as ecs,
    App, Stack,
    aws_iam as iam,
)

# Based on https://aws.amazon.com/blogs/compute/introducing-cloud-native-networking-for-ecs-containers/

app = App()
stack = Stack(app, "ec2-service-with-task-networking")

# Create a cluster
vpc = ec2.Vpc(
    stack, "Vpc",
    max_azs=2
)

cluster = ecs.Cluster(
    stack, "awsvpc-ecs-demo-cluster",
    vpc=vpc
)
ecs_role = iam.Role(
    stack, "EcsInstanceRole",
    assumed_by=iam.ServicePrincipal("ec2.amazonaws.com"),
    managed_policies=[
        iam.ManagedPolicy.from_aws_managed_policy_name("service-role/AmazonEC2ContainerServiceforEC2Role")
    ]
)
# Create a security group that allows HTTP traffic on port 80 for our
# containers without modifying the security group on the instance
security_group = ec2.SecurityGroup(
    stack, "nginx--7623",
    vpc=vpc,
    allow_all_outbound=True
)
security_group.add_ingress_rule(
    ec2.Peer.any_ipv4(),
    ec2.Port.tcp(80)
)
# 替换 AutoScalingGroup 的启动配置为启动模板
launch_template = ec2.LaunchTemplate(
    stack, "LaunchTemplate",
    instance_type=ec2.InstanceType("t2.micro"),
    machine_image=ecs.EcsOptimizedImage.amazon_linux2(),
    #security_group=ec2.SecurityGroup(stack, "SG", vpc=vpc),
    security_group=security_group,
    user_data=ec2.UserData.for_linux(),
    role = ecs_role
)

asg = autoscaling.AutoScalingGroup(
    stack, "DefaultAutoScalingGroup",
    launch_template=launch_template,
    vpc=vpc,
    vpc_subnets=ec2.SubnetSelection(subnet_type=ec2.SubnetType.PUBLIC),
)

capacity_provider = ecs.AsgCapacityProvider(stack, "AsgCapacityProvider",
    auto_scaling_group=asg
)
cluster.add_asg_capacity_provider(capacity_provider)

# Create a task definition with its own elastic network interface
task_definition = ecs.Ec2TaskDefinition(
    stack, "nginx-awsvpc",
    network_mode=ecs.NetworkMode.HOST,
)

web_container = task_definition.add_container(
    "nginx",
    image=ecs.ContainerImage.from_registry("nginx:latest"),
    cpu=100,
    memory_limit_mib=256,
    essential=True
)
port_mapping = ecs.PortMapping(
    container_port=80,
    protocol=ecs.Protocol.TCP
)
web_container.add_port_mappings(port_mapping)



# Create the service
service = ecs.Ec2Service(
    stack, "awsvpc-ecs-demo-service",
    cluster=cluster,
    task_definition=task_definition,
    #security_groups=[security_group]
)

app.synth()
3.4.2 执行代码
shell 复制代码
python -m venv ./.venv
source ./.venv/Scripts/activate
pip install -r requirements.txt
cdk --require-approval never deploy

访问http://35.78.68.247:80,可以看到正常打开。

接下来的练习:未完待续。。。

  • 如何使用nlb + farget service
  • 设定fargate AutoScaling policy
  • 设定fargate efs
相关推荐
墨染枫3 小时前
pytorch学习笔记-自定义卷积
pytorch·笔记·学习
今天也好累5 小时前
C 语言基础第16天:指针补充
java·c语言·数据结构·笔记·学习·算法
AWS官方合作商5 小时前
AWS Blockchain Templates:快速部署企业级区块链网络的终极解决方案
区块链·aws
朱小弟cs66 小时前
Orange的运维学习日记--16.Linux时间管理
linux·运维·学习
无责任此方_修行中7 小时前
不止是 AI 热潮:AWS 2025 技术峰会带给我的思考
后端·架构·aws
两颗泡腾片7 小时前
C++提高编程学习--模板
c++·学习
shangyingying_18 小时前
关于神经网络CNN的搭建过程以及图像卷积的实现过程学习
神经网络·学习·cnn
ayas1231910 小时前
CSS学习
前端·css·学习
Chase_______12 小时前
redis快速入门及使用
java·数据库·redis·学习·spring·缓存
阿群今天学习了吗12 小时前
RNN、LSTM、Transformer推荐博文
人工智能·笔记·python·学习·算法