Elasticsearch 的结构化文档配置 - 递归分块实践

今天我发表的一篇文章 "在 Elasticsearch 中为结构化文档配置递归分块" 看着很简单。可能很多开发者还是不能得其要领,特别是在最新的版本中,我们的向量在默认的情况下是不在 source 里进行展示的。很难理解其中精髓。我在这篇文章里,使用一个具体的例子来进行展示。

例子

我们可以参考官方文档 "Inference integrations" 来进行展示。首先,我们选择系统自带的 ELSER 模型来进行展示。我们必须安装好 ELSER 模型:

首先我们定义如下的一个 inference endpoint:

复制代码
PUT _inference/sparse_embedding/recursive_markdown_chunks
{
  "service": "elasticsearch",
  "service_settings": {
    "model_id": ".elser_model_2",
    "num_allocations": 1,
    "num_threads": 1
  },
  "chunking_settings": {
    "strategy": "recursive",
    "max_chunk_size": 25,
    "separators": [
      "\n# ",
      "\n## "
    ]
  }
}

我们可以参考文档来了解 recursive 是如何工作的。递归策略根据可配置的分隔符模式列表(例如换行符或 Markdown 标题)拆分输入文本。分块器按顺序应用这些分隔符,递归地拆分超过 max_chunk_size 单词限制的任何分块。如果没有分隔符生成足够小的分块,该策略将退回到句子级拆分。

在上面,我们使用了 custom separator group:也就是基于第一第二级的 heading 来进行分隔提前。

接下来,我们定义一个索引:

复制代码
PUT recursive_markdown_vectors
{
  "mappings": {
    "properties": {
      "content": {
        "type": "text",
        "copy_to": "inference_field"
      },
      "inference_field": {
        "type": "semantic_text",
        "inference_id": "recursive_markdown_chunks"
      }
    }
  }
}

然后,我们写入文档:

复制代码
POST recursive_markdown_vectors/_doc/1
{
  "content": "# First Header
This first test sentence has ten total words in it.

## Second header
This second test sentence has ten total words in it.

# Third Header
This third test sendtence has ten total words in it.

## Fourth Header
This Fourth test sendtence has ten total words in it.


## Fifth Header
This fifth test sentence has ten total words in it. This sixth test sentence has ten total words in it. This seventh test sentence has ten total words in it."
}

这样我们就大功告成了。

我们可以使用如下的查询来进行展示:

复制代码
GET recursive_markdown_vectors/_search?filter_path=**.hits
{
  "fields": [
    {
      "field": "inference_field",
      "format": "chunks"
    }
  ]
}

注意:上面的 fields 只对 9.2+ 及以上版本起作用。

我们可以看到如下的查询结果:

从上面的结果中,我们可以看到有 3 个 chunks。

我们接下来把 max_chunk_size 设置为 10,看看最后的结果:

复制代码
PUT _inference/sparse_embedding/recursive_markdown_chunks
{
  "service": "elasticsearch",
  "service_settings": {
    "model_id": ".elser_model_2",
    "num_allocations": 1,
    "num_threads": 1
  },
  "chunking_settings": {
    "strategy": "recursive",
    "max_chunk_size": 10,
    "separators": [
      "\n# ",
      "\n## "
    ]
  }
}

很显然,它和我们之前的分块还是有点不一样。我们可以试试不同的值来看看。

复制代码
PUT _inference/sparse_embedding/recursive_markdown_chunks
{
  "service": "elasticsearch",
  "service_settings": {
    "model_id": ".elser_model_2",
    "num_allocations": 1,
    "num_threads": 1
  },
  "chunking_settings": {
    "strategy": "recursive",
    "max_chunk_size": 35,
    "separators": [
      "\n# ",
      "\n## "
    ]
  }
}

我们也可以尝试使用 "separator_group": "markdown":

复制代码
PUT _inference/sparse_embedding/recursive_markdown_chunks
{
  "service": "elasticsearch",
  "service_settings": {
    "model_id": ".elser_model_2",
    "num_allocations": 1,
    "num_threads": 1
  },
  "chunking_settings": {
    "strategy": "recursive",
    "max_chunk_size": 25,
    "separator_group": "markdown"
  }
}

可以看出来,它的结果和我们之前第一个结果的没有什么不一样的,这是因为 markdown 所包含的 separators 里也是对 heading 进行分段的。

相关推荐
qq_12498707532 分钟前
基于JavaWeb的大学生房屋租赁系统(源码+论文+部署+安装)
java·数据库·人工智能·spring boot·计算机视觉·毕业设计·计算机毕业设计
杜子不疼.2 分钟前
CANN算子基础框架库opbase的算子开发与扩展机制深度解析
人工智能
程序猿追3 分钟前
CANN ops-math仓库解读 数学算子的底层支撑与高性能实现
人工智能·架构
结局无敌4 分钟前
统一算子语言:cann/ops-nn 如何为异构AI世界建立通用“方言”
人工智能·cann
杜子不疼.10 分钟前
CANN计算机视觉算子库ops-cv的图像处理与特征提取优化实践
图像处理·人工智能·计算机视觉
大闲在人11 分钟前
软件仍将存在,但软件公司会以全新形式出现——从Claude智能体引发万亿市值震荡看行业重构
人工智能
艾莉丝努力练剑12 分钟前
【Linux:文件】Ext系列文件系统(初阶)
大数据·linux·运维·服务器·c++·人工智能·算法
芷栀夏16 分钟前
从 CANN 开源项目看现代爬虫架构的演进:轻量、智能与统一
人工智能·爬虫·架构·开源·cann
说实话起个名字真难啊18 分钟前
用docker来安装openclaw
docker·ai·容器
梦帮科技25 分钟前
OpenClaw 桥接调用 Windows MCP:打造你的 AI 桌面自动化助手
人工智能·windows·自动化