Elasticsearch 的结构化文档配置 - 递归分块实践

今天我发表的一篇文章 "在 Elasticsearch 中为结构化文档配置递归分块" 看着很简单。可能很多开发者还是不能得其要领,特别是在最新的版本中,我们的向量在默认的情况下是不在 source 里进行展示的。很难理解其中精髓。我在这篇文章里,使用一个具体的例子来进行展示。

例子

我们可以参考官方文档 "Inference integrations" 来进行展示。首先,我们选择系统自带的 ELSER 模型来进行展示。我们必须安装好 ELSER 模型:

首先我们定义如下的一个 inference endpoint:

复制代码
PUT _inference/sparse_embedding/recursive_markdown_chunks
{
  "service": "elasticsearch",
  "service_settings": {
    "model_id": ".elser_model_2",
    "num_allocations": 1,
    "num_threads": 1
  },
  "chunking_settings": {
    "strategy": "recursive",
    "max_chunk_size": 25,
    "separators": [
      "\n# ",
      "\n## "
    ]
  }
}

我们可以参考文档来了解 recursive 是如何工作的。递归策略根据可配置的分隔符模式列表(例如换行符或 Markdown 标题)拆分输入文本。分块器按顺序应用这些分隔符,递归地拆分超过 max_chunk_size 单词限制的任何分块。如果没有分隔符生成足够小的分块,该策略将退回到句子级拆分。

在上面,我们使用了 custom separator group:也就是基于第一第二级的 heading 来进行分隔提前。

接下来,我们定义一个索引:

复制代码
PUT recursive_markdown_vectors
{
  "mappings": {
    "properties": {
      "content": {
        "type": "text",
        "copy_to": "inference_field"
      },
      "inference_field": {
        "type": "semantic_text",
        "inference_id": "recursive_markdown_chunks"
      }
    }
  }
}

然后,我们写入文档:

复制代码
POST recursive_markdown_vectors/_doc/1
{
  "content": "# First Header
This first test sentence has ten total words in it.

## Second header
This second test sentence has ten total words in it.

# Third Header
This third test sendtence has ten total words in it.

## Fourth Header
This Fourth test sendtence has ten total words in it.


## Fifth Header
This fifth test sentence has ten total words in it. This sixth test sentence has ten total words in it. This seventh test sentence has ten total words in it."
}

这样我们就大功告成了。

我们可以使用如下的查询来进行展示:

复制代码
GET recursive_markdown_vectors/_search?filter_path=**.hits
{
  "fields": [
    {
      "field": "inference_field",
      "format": "chunks"
    }
  ]
}

注意:上面的 fields 只对 9.2+ 及以上版本起作用。

我们可以看到如下的查询结果:

从上面的结果中,我们可以看到有 3 个 chunks。

我们接下来把 max_chunk_size 设置为 10,看看最后的结果:

复制代码
PUT _inference/sparse_embedding/recursive_markdown_chunks
{
  "service": "elasticsearch",
  "service_settings": {
    "model_id": ".elser_model_2",
    "num_allocations": 1,
    "num_threads": 1
  },
  "chunking_settings": {
    "strategy": "recursive",
    "max_chunk_size": 10,
    "separators": [
      "\n# ",
      "\n## "
    ]
  }
}

很显然,它和我们之前的分块还是有点不一样。我们可以试试不同的值来看看。

复制代码
PUT _inference/sparse_embedding/recursive_markdown_chunks
{
  "service": "elasticsearch",
  "service_settings": {
    "model_id": ".elser_model_2",
    "num_allocations": 1,
    "num_threads": 1
  },
  "chunking_settings": {
    "strategy": "recursive",
    "max_chunk_size": 35,
    "separators": [
      "\n# ",
      "\n## "
    ]
  }
}

我们也可以尝试使用 "separator_group": "markdown":

复制代码
PUT _inference/sparse_embedding/recursive_markdown_chunks
{
  "service": "elasticsearch",
  "service_settings": {
    "model_id": ".elser_model_2",
    "num_allocations": 1,
    "num_threads": 1
  },
  "chunking_settings": {
    "strategy": "recursive",
    "max_chunk_size": 25,
    "separator_group": "markdown"
  }
}

可以看出来,它的结果和我们之前第一个结果的没有什么不一样的,这是因为 markdown 所包含的 separators 里也是对 heading 进行分段的。

相关推荐
每日新鲜事3 分钟前
热销复盘:招商林屿缦岛203套售罄背后的客户逻辑分析
大数据·人工智能
Coder_Boy_9 分钟前
基于SpringAI的在线考试系统-考试系统开发流程案例
java·数据库·人工智能·spring boot·后端
懒虫虫~17 分钟前
利用自定义Agent-Skill实现项目JDK17升级
ai·skill
挖坑的张师傅25 分钟前
对 AI Native 架构的一些思考
人工智能
AI架构全栈开发实战笔记1 小时前
Eureka 在大数据环境中的性能优化技巧
大数据·ai·eureka·性能优化
大厂资深架构师1 小时前
Spring Cloud Eureka在后端系统中的服务剔除策略
spring·spring cloud·ai·eureka
AI架构全栈开发实战笔记1 小时前
Eureka 对大数据领域服务依赖关系的梳理
大数据·ai·云原生·eureka
LinQingYanga1 小时前
极客时间多模态大模型训练营毕业总结(2026年2月8日)
人工智能
pccai-vip1 小时前
过去24小时AI创业趋势分析
人工智能
SEO_juper1 小时前
AI SEO实战:整合传统技术与AI生成搜索的优化框架
人工智能·chatgpt·facebook·seo·geo·aeo