贝叶斯笔记

核心思想

  1. 贝叶斯定理

    逆向概率:P(类别|特征) = P(特征|类别)·P(类别) / P(特征)

    其中 P(特征) 在比较不同类别时可忽略,因此:

    P(类别|特征) ∝ P(类别)·P(特征|类别)

  2. "朴素"假设

    特征之间条件独立,因此:

    P(特征集合|类别) = ∏ᵢ P(特征ᵢ|类别)

二、典型示例

  1. 拼写纠正

    观测到错误单词 D,候选单词 h 的得分:score(h) = P(h)·P(D|h)

    P(h):单词先验频率;P(D|h):打错成 D 的概率(编辑距离模型)。

    选得分最高的 h 作为纠正结果。

  2. 垃圾邮件过滤

    邮件 D = {w₁, w₂, ..., wₙ}

    P(h⁺|D) ∝ P(h⁺) ∏ᵢ P(wᵢ|h⁺)

    P(h⁻|D) ∝ P(h⁻) ∏ᵢ P(wᵢ|h⁻)

    比较两者大小即可判定是否垃圾邮件。

三、三种常用模型

表格

复制

模型 适用特征类型 sklearn 类 关键参数说明
多项式 离散计数(如词频) MultinomialNB alpha:拉普拉斯平滑;fit_prior:是否学习先验
高斯 连续数值 GaussianNB priors:自定义先验
伯努利 0/1 布尔变量 BernoulliNB binarize:二值化阈值

四、sklearn 通用接口

fit(X, y) 训练

predict(X) 预测类别

predict_proba(X) 预测各类别概率

score(X, y) 准确率评估

相关推荐
海天一色y几秒前
基于Resnet50预训练模型实现CIFAR-10数据集的分类任务
人工智能·分类·数据挖掘
Tisfy几秒前
LeetCode 0085.最大矩形:单调栈
算法·leetcode·题解·单调栈
mit6.8242 分钟前
出入度|bfs|状压dp
算法
xiaobaishuoAI2 分钟前
后端工程化实战指南:从规范到自动化,打造高效协作体系
java·大数据·运维·人工智能·maven·devops·geo
hweiyu003 分钟前
强连通分量算法:Kosaraju算法
算法·深度优先
源代码•宸3 分钟前
Golang语法进阶(定时器)
开发语言·经验分享·后端·算法·golang·timer·ticker
dazzle5 分钟前
计算机视觉处理(OpenCV基础教学(二十一):模板匹配技术详解)
人工智能·opencv·计算机视觉
TTGGGFF5 分钟前
【零基础教程】从零部署 NewBie-image-Exp0.1:避开所有源码坑点
人工智能·多模态·图片生成
小明_GLC5 分钟前
LangGraph
人工智能
PeterClerk6 分钟前
深度学习-NLP 常见语料库
人工智能·深度学习·自然语言处理