【RAG】使用llamaindex进行RAG开发

RAG基本步骤

  1. parse:将pdf,doc,ppt等file解析成文本,如markdown。有基本的metadata。
  2. chunk:将markdown文本进行分块,比如按大小分,语义分等。可以为每个块添加更丰富的metadata。
  3. index:将每个分块使用embedding model转换为向量,存储到vector db中,方便后续检索。
  4. retrieve:将user query也用embedding model转换为向量,连接vector db进行相似度搜索,rerank等找到和query最相关的top k个块。
  5. generate:根据上一步返回的最相关块和user query结合,调用llm进行生成。一般会有些后处理。

123步会在user上传知识库文件后执行,45步会在user对知识库进行问答时执行。


我们使用llamaindex完成rag整个过程,此外还需要:

  • minio: object store,存储文件
  • pgvector: vector db,存储embedding向量
  • docker env(非必须)

llamaindex提供了high level的RAG实现,但是我们需要更好的灵活性,所以会用更低层的API来做

  1. 需要设计五个base类,覆盖5个步骤的基础功能
  2. 每个base类有具体实现,能够实现对应功能
  3. 实现类按顺序串联,即可形成pipeline执行QA。其中index和retrieve通过db config保持一致
  4. 每个步骤可作为一个service

代码等忙完再整理

相关推荐
学习是生活的调味剂16 小时前
大模型应用之使用LangChain实现RAG(一)
langchain·rag
laplace012318 小时前
mcp和skills区别
agent·rag·mcp·skills
uncle_ll1 天前
RAG 系统性能跃迁:LlamaIndex 索引优化实战指南
llm·rag·检索·llamaindex
uncle_ll2 天前
Milvus介绍及多模态检索实践:从部署到实战全解析
milvus·多模态·向量数据库·ann·rag·搜索·检索
猿小羽2 天前
AIGC 应用工程师(3-5 年)面试题精讲:从基础到实战的系统备战清单
面试·大模型·aigc·agent·rag
大傻^2 天前
RAG检索增强生成深度解析:从召回率瓶颈到企业级落地实践
rag·检索增强生成
OPEN-Source2 天前
大模型实战:搭建一张“看得懂”的大模型应用可观测看板
人工智能·python·langchain·rag·deepseek
爱喝白开水a3 天前
前端AI自动化测试:brower-use调研让大模型帮你做网页交互与测试
前端·人工智能·大模型·prompt·交互·agent·rag
落霞的思绪3 天前
GIS大模型RAG知识库
agent·rag
梵得儿SHI3 天前
(第十篇)Spring AI 核心技术攻坚全梳理:企业级能力矩阵 + 四大技术栈攻坚 + 性能优化 Checklist + 实战项目预告
java·人工智能·spring·rag·企业级ai应用·springai技术体系·多模态和安全防护