【Hadoop】YARN、离线计算框架MapReduce、Hive

YARN

YARN是 Hadoop 的​​资源管理和作业调度层​​。

Resource Manager(RM)只有一个,管理所有资源,相当于yarn的master。Node Manager(NM)每个节点有一个,管理节点的资源。RM管理多个NM,监听他们的心跳。RM存在单点故障,但可以基于zookeeper实现HA(高可用)。

yarn运行过程

client向RM提交ApplicationMaster程序、启动命令以及应用程序本身,RM会根据节点资源使用情况找一个节点运行AM,然后AM将自己的任务和资源请求汇报给RM,RM就会在各个节点创建任务、分配资源,然后AM可以直接与节点上的NM通信,监督资源的完成状况,AM也会定期向RM发送心跳。Client可以在AM或RM获得应用的运行状况。

容错性体现

Task失败后NM会将失败的任务告诉AM,AM决定如何处理失败的任务。

AM失败后,RM负责创建一个新的MR AM。

RM收不到NM的心跳,会像AM报告,AM找新的节点运行失败的任务

离线计算框架MapReduce

MapReduce工作过程

首先,将数据切片(片的大小跟数据块大小相同),分发到HDFS的不同节点。每个片有一个map task任务来处理,这个任务会调用map()函数,生成一系列中间键值对。为确保同样key(键)的数据到同一个reduce task,会将数据进行分区并排序。reduce task会主动询问哪个map任务完成了,并拉取自己想要的键值对应的分区的数据并归并(shuffle过程)。全部拉取完成后,reduce task会调用reduce()函数计算结果,最后将结果保存到HDFS。

shuffle阶段涉及大量网络I/O操作(从不同节点拉取数据),和磁盘I/O操作(边拉取边处理,会进行数据的归并以及溢写到磁盘),所以优化mapreduce主要是优化shuffle阶段。

MapReduce容错机制

Task失败后NM会将失败的任务告诉AM,AM决定如何处理失败的任务。

AM失败后,RM负责创建一个新的MR AM。

RM收不到NM的心跳,会像AM报告,AM找新的节点运行失败的任务

推测执行机制

作业完成时间取决于最慢完成时间,某个任务慢于其他,启动一个备份任务,同时运行。不能启用推测执行机制时机:负载倾斜严重,特殊任务(向数据库写数据)

Hive

Hive:数据分析工具,解决海量结构化数据分析。离线分析,自动生成map-reduce作业。是hql>map-reduce的解释器。可以用类sql语句进行对表的查询。

你只要知道,它的存在是为了简化我们的操作,毕竟sql语句我们都比较熟悉。

相关推荐
小高学习java8 分钟前
Canal、Elasticsearch、RabbitMq构建高可用、高性能的异构数据同步方案(亲测可用!!!!)
大数据·elasticsearch·rabbitmq·java-rabbitmq
_OP_CHEN11 分钟前
算法基础篇:(十二)基础算法之倍增思想:从快速幂到大数据运算优化
大数据·c++·算法·acm·算法竞赛·倍增思想
武子康37 分钟前
大数据-159 Apache Kylin Cube 实战:Hive 装载与预计算加速(含 Cuboid/实时 OLAP,Kylin 4.x)
大数据·后端·apache kylin
lisw051 小时前
边缘计算与云计算!
大数据·人工智能·机器学习·云计算·边缘计算
森语林溪1 小时前
数据“洪灾”变“水利”——古人“格物致知”的大数据实践
大数据
Hello.Reader2 小时前
Flink CDC 用 Db2 CDC 实时同步数据到 Elasticsearch
大数据·elasticsearch·flink
老蒋新思维2 小时前
创客匠人 2025 高峰论谈(11.22-25):AI 智能体重构创始人 IP 打造与知识变现的管理逻辑
大数据·网络·人工智能·网络协议·tcp/ip·重构·知识付费
TDengine (老段)4 小时前
TDengine 字符串函数 TO_BASE64 用户手册
android·大数据·服务器·物联网·时序数据库·tdengine·涛思数据
啊吧怪不啊吧4 小时前
算法王冠上的明珠——动态规划之斐波那契数列问题
大数据·算法·动态规划
源码之家12 小时前
基于Python房价预测系统 数据分析 Flask框架 爬虫 随机森林回归预测模型、链家二手房 可视化大屏 大数据毕业设计(附源码)✅
大数据·爬虫·python·随机森林·数据分析·spark·flask