犀牛派A1上使用Faster Whisper完成音频转文字

项目介绍:Faster Whisper 是一个基于 CTranslate2 的 OpenAI Whisper 模型的高效实现。它是一个快速推理引擎,用于 Transformer 模型,相比 OpenAI 的 Whisper 模型,速度提升了 4 倍。该项目支持 Windows、Linux 和 macOS 平台,并且提供了多种优化选项,如 FP16 和 INT8 计算类型,以适应不同的硬件环境。

硬件:犀牛派A1

平台:QCS6490


一、环境准备

打开终端,在命令行界面中输入如下命令来安装Faster Whisper

复制代码
sudo apt update && sudo apt install -y python3-pip ffmpeg
#因为这里使用CPU进行推理,安装 CPU 优化的 CTranslate2 和 Faster-Whisper
pip install faster-whisper
pip install ctranslate2 --no-deps # 确保不安装 GPU 相关依赖 
pip install faster-whisper

二、准备推理脚本

编写或拉取一个脚本,可命名为 test.py

python 复制代码
from faster_whisper import WhisperModel
import sys
import time
def main():
    # 获取音频文件名
    if len(sys.argv) > 1:
        filename = sys.argv[1]
    else:
        filename = input("请输入要转录的音频文件名:")
    # 选择模型大小,例如 "base", "small", "medium", "large-v3"
    model_size = "small"

    # 加载模型并统计加载时间
    load_start = time.perf_counter()
    model = WhisperModel(
        model_size,
        device="cpu",
        compute_type="int8"
    )
    load_duration = time.perf_counter() - load_start
    print(f"模型加载耗时: {load_duration:.2f}秒")

    # 开始转录计时
    transcribe_start = time.perf_counter()

    # 自动检测语言转录
    segments, info = model.transcribe(filename, beam_size=5)

    # 立即处理所有分段以确保准确计时
    segments = list(segments)

    # 结束计时
    transcribe_duration = time.perf_counter() - transcribe_start

    # 输出结果
    print(f"\n检测到的语言: {info.language} (置信度: {info.language_probability:.2f})")
    print(f"音频时长: {info.duration:.2f}秒")
    print(f"转录处理耗时: {transcribe_duration:.2f}秒")
    print(f"总耗时(含加载): {load_duration + transcribe_duration:.2f}秒\n")

    # 输出逐句转录结果
    for segment in segments:
        print(f"[{segment.start:6.2f}s -> {segment.end:6.2f}s] {segment.text.strip()}")

if __name__ == "__main__":
	main()

三、运行测试

可在浏览器上任意下载一个音频文件

将音频放入测试脚本的同级目录进行测试,脚本可自动检测语言

复制代码
python3 test.py youshengshu.wma
相关推荐
A先生的AI之旅2 分钟前
2026-1-30 LingBot-VA解读
人工智能·pytorch·python·深度学习·神经网络
Learn Beyond Limits2 分钟前
文献阅读:A Probabilistic U-Net for Segmentation of Ambiguous Images
论文阅读·人工智能·深度学习·算法·机器学习·计算机视觉·ai
丝瓜蛋汤2 分钟前
微调生成特定写作风格助手
人工智能·python
OpenMiniServer17 分钟前
电气化能源革命下的社会
java·人工智能·能源
猿小羽22 分钟前
探索 Codex:AI 编程助手的未来潜力
人工智能·openai·代码生成·codex·ai编程助手
菜青虫嘟嘟26 分钟前
Expert Iteration:一种无需人工标注即可显著提升大语言模型推理能力的简单方法核心
人工智能·语言模型·自然语言处理
玄同76532 分钟前
LangChain v1.0+ Retrieval模块完全指南:从文档加载到RAG实战
人工智能·langchain·知识图谱·embedding·知识库·向量数据库·rag
deepdata_cn38 分钟前
为什么AI需要因果?
人工智能·因果学习
说私域1 小时前
社群招募文案的核心构建要点与工具赋能路径——基于AI智能名片链动2+1模式商城小程序的实践研究
人工智能·小程序·私域运营
LaughingZhu1 小时前
Product Hunt 每日热榜 | 2026-01-31
大数据·人工智能·经验分享·搜索引擎·产品运营