咱们今天就用Scala来写个高效好用的网络爬虫!Scala这语言处理并发任务特别拿手,尤其搭配Akka工具库,就像给爬虫装上了多线程引擎,能同时处理大量网页抓取。下面我会带你一步步实现:从发起网页请求、解析内容到管理抓取节奏,完整走一遍流程。你会发现用Scala写爬虫不仅性能强劲,代码结构还特别清晰!

下面是一个完整的 Scala 爬虫教程,重点展示如何利用 Scala 的并发特性(特别是 Akka Actor 模型)构建高性能的网络爬虫。
项目概述
我们将创建一个能够并发爬取多个网页的爬虫系统,包含以下功能:
- 并发发送 HTTP 请求
- 解析 HTML 内容提取链接和数据
- 控制请求频率避免被封禁
- 简单的数据存储
环境设置
1. 创建 SBT 项目
首先创建一个新的 SBT 项目,在 build.sbt
中添加以下依赖:
go
name := "scala-web-crawler"
version := "1.0"
scalaVersion := "2.13.8"
val akkaVersion = "2.6.19"
val akkaHttpVersion = "10.2.9"
libraryDependencies ++= Seq(
// Akka Actor
"com.typesafe.akka" %% "akka-actor-typed" % akkaVersion,
"com.typesafe.akka" %% "akka-stream" % akkaVersion,
// Akka HTTP
"com.typesafe.akka" %% "akka-http" % akkaHttpVersion,
"com.typesafe.akka" %% "akka-http-spray-json" % akkaHttpVersion,
// HTML 解析
"org.jsoup" % "jsoup" % "1.14.3",
// 日志
"ch.qos.logback" % "logback-classic" % "1.2.11",
// 数据库存储 (SQLite)
"org.xerial" % "sqlite-jdbc" % "3.36.0.3",
"com.typesafe.slick" %% "slick" % "3.3.3",
"com.typesafe.slick" %% "slick-hikaricp" % "3.3.3"
)
实现代码
1. 定义消息协议(Actor 通信)
scala
// src/main/scala/crawler/Messages.scala
package crawler
sealed trait CrawlerMessage
case class StartCrawling(urls: List[String]) extends CrawlerMessage
case class CrawlUrl(url: String, depth: Int) extends CrawlerMessage
case class PageFetched(url: String, content: String, depth: Int) extends CrawlerMessage
case class ParsePage(url: String, content: String, depth: Int) extends CrawlerMessage
case class LinksFound(url: String, links: List[String], depth: Int) extends CrawlerMessage
case object CrawlingCompleted extends CrawlerMessage
2. 实现网页下载器
scala
// src/main/scala/crawler/Downloader.scala
package crawler
import akka.actor.typed.{ActorRef, Behavior}
import akka.actor.typed.scaladsl.Behaviors
import akka.http.scaladsl.Http
import akka.http.scaladsl.model._
import akka.http.scaladsl.unmarshalling.Unmarshal
import scala.concurrent.ExecutionContext
import scala.util.{Failure, Success}
object Downloader {
sealed trait Command
case class Download(url: String, depth: Int, replyTo: ActorRef[PageFetched]) extends Command
def apply(): Behavior[Command] = Behaviors.setup { context =>
implicit val ec: ExecutionContext = context.executionContext
Behaviors.receiveMessage {
case Download(url, depth, replyTo) =>
context.log.info(s"Downloading: $url (depth: $depth)")
// 使用 Akka HTTP 发送请求
Http(context.system.classicSystem).singleRequest(HttpRequest(uri = url)).onComplete {
case Success(response) =>
response.status match {
case StatusCodes.OK =>
Unmarshal(response.entity).to[String].onComplete {
case Success(content) =>
replyTo ! PageFetched(url, content, depth)
case Failure(ex) =>
context.log.error(s"Failed to parse content from $url: ${ex.getMessage}")
}
case _ =>
context.log.warn(s"Request to $url failed with status: ${response.status}")
}
case Failure(ex) =>
context.log.error(s"Request to $url failed: ${ex.getMessage}")
}
Behaviors.same
}
}
}
3. 实现页面解析器
scala
// src/main/scala/crawler/Parser.scala
package crawler
import akka.actor.typed.{ActorRef, Behavior}
import akka.actor.typed.scaladsl.Behaviors
import org.jsoup.Jsoup
import org.jsoup.nodes.Document
import scala.collection.JavaConverters._
import scala.util.Try
object Parser {
sealed trait Command
case class Parse(html: String, url: String, depth: Int, replyTo: ActorRef[LinksFound]) extends Command
def apply(): Behavior[Command] = Behaviors.receive { (context, message) =>
message match {
case Parse(html, url, depth, replyTo) =>
context.log.info(s"Parsing page: $url")
Try {
val doc: Document = Jsoup.parse(html, url)
// 提取页面标题
val title = doc.title()
// 提取所有链接
val links = doc.select("a[href]")
.asScala
.map(_.attr("abs:href"))
.filter(link => link.startsWith("http") && !link.contains("#"))
.toList
// 提取正文文本(简单示例)
val text = doc.body().text()
(title, links, text)
} match {
case scala.util.Success((title, links, text)) =>
// 这里可以添加代码将提取的数据存储到数据库
context.log.info(s"Found ${links.size} links on $url")
replyTo ! LinksFound(url, links, depth)
case scala.util.Failure(exception) =>
context.log.error(s"Failed to parse $url: ${exception.getMessage}")
}
Behaviors.same
}
}
}
4. 实现爬虫管理器(核心 Actor)
scala
// src/main/scala/crawler/CrawlerManager.scala
package crawler
import akka.actor.typed.{ActorRef, Behavior, SupervisorStrategy}
import akka.actor.typed.scaladsl.{Behaviors, PoolRouter, Routers}
import scala.collection.mutable
import scala.concurrent.duration._
object CrawlerManager {
sealed trait Command
case class Start(urls: List[String], maxDepth: Int) extends Command
case class AddUrl(url: String, depth: Int) extends Command
case class CrawlCompleted(url: String) extends Command
def apply(): Behavior[Command] = Behaviors.setup { context =>
// 创建下载器和解析器的池
val downloaderPool: ActorRef[Downloader.Command] = {
val pool = PoolRouter(Downloader()).withRoundRobinRouting().withPoolSize(5)
context.spawn(pool, "downloader-pool")
}
val parserPool: ActorRef[Parser.Command] = {
val pool = PoolRouter(Parser()).withRoundRobinRouting().withPoolSize(3)
context.spawn(pool, "parser-pool")
}
// 状态管理
val visitedUrls = mutable.Set.empty[String]
val pendingUrls = mutable.Queue.empty[(String, Int)]
var activeTasks = 0
var maxDepth = 3
Behaviors.receiveMessage {
case Start(urls, depth) =>
maxDepth = depth
urls.foreach(url => self ! AddUrl(url, 0))
Behaviors.same
case AddUrl(url, depth) =>
if (!visitedUrls.contains(url) && depth <= maxDepth) {
visitedUrls.add(url)
pendingUrls.enqueue((url, depth))
context.self ! processNextUrl
}
Behaviors.same
case processNextUrl: CrawlCompleted.type =>
activeTasks -= 1
if (pendingUrls.nonEmpty) {
val (url, depth) = pendingUrls.dequeue()
activeTasks += 1
// 发送下载请求
downloaderPool ! Downloader.Download(url, depth, context.self)
} else if (activeTasks == 0) {
context.log.info("Crawling completed!")
// 所有任务完成
}
Behaviors.same
case PageFetched(url, content, depth) =>
// 将页面发送给解析器
parserPool ! Parser.Parse(content, url, depth, context.self)
Behaviors.same
case LinksFound(url, links, depth) =>
context.log.info(s"Found ${links.size} links on $url")
// 将新链接添加到队列中
links.foreach { link =>
context.self ! AddUrl(link, depth + 1)
}
// 标记当前URL完成
context.self ! CrawlCompleted
Behaviors.same
case _ => Behaviors.unhandled
}
}
// 内部消息对象
private case object processNextUrl extends Command
}
5. 实现速率限制中间件
scala
// src/main/scala/crawler/RateLimiter.scala
package crawler
import akka.actor.typed.{ActorRef, Behavior}
import akka.actor.typed.scaladsl.Behaviors
import scala.concurrent.duration._
object RateLimiter {
sealed trait Command
case class Request(url: String, replyTo: ActorRef[PageFetched]) extends Command
case object Tick extends Command
def apply(delay: FiniteDuration): Behavior[Command] = Behaviors.withTimers { timers =>
timers.startTimerWithFixedDelay(Tick, delay)
Behaviors.setup { context =>
val queue = scala.collection.mutable.Queue.empty[(String, ActorRef[PageFetched])]
Behaviors.receiveMessage {
case Request(url, replyTo) =>
queue.enqueue((url, replyTo))
Behaviors.same
case Tick =>
if (queue.nonEmpty) {
val (url, replyTo) = queue.dequeue()
context.log.debug(s"Processing: $url")
// 这里实际应该发送请求,但为了简化,我们直接返回模拟数据
replyTo ! PageFetched(url, s"Content of $url", 0)
}
Behaviors.same
}
}
}
}
6. 主应用程序
scala
// src/main/scala/crawler/Main.scala
package crawler
import akka.actor.typed.ActorSystem
import akka.actor.typed.scaladsl.Behaviors
object Main extends App {
// 创建Actor系统
val rootBehavior = Behaviors.setup[Nothing] { context =>
// 创建爬虫管理器
val crawlerManager = context.spawn(CrawlerManager(), "crawler-manager")
// 启动爬虫
val startUrls = List(
"https://httpbin.org/html",
"https://httpbin.org/links/10/0",
"https://httpbin.org/links/10/1"
)
crawlerManager ! CrawlerManager.Start(startUrls, maxDepth = 2)
Behaviors.empty
}
val system = ActorSystem[Nothing](rootBehavior, "WebCrawlerSystem")
// 10分钟后关闭系统
import system.executionContext
system.scheduler.scheduleOnce(10.minutes) {
system.terminate()
}
}
7. 配置 application.conf
ini
akka {
loglevel = INFO
http {
host-connection-pool {
max-connections = 20
max-open-requests = 256
}
}
}
# 数据库配置(如果需要存储数据)
db {
config = "crawler.db"
driver = "org.sqlite.JDBC"
url = "jdbc:sqlite:crawler.db"
connectionPool = disabled
keepAliveConnection = true
}
运行爬虫
1、编译项目:
python
sbt compile
2、运行爬虫:
arduino
sbt run
扩展功能
这个基础爬虫可以进一步扩展:
1、数据存储:添加数据库支持,存储爬取的内容
2、代理支持:添加代理轮询功能避免IP被封
3、分布式爬取:使用Akka Cluster实现分布式爬虫
4、JS渲染:集成Selenium或HtmlUnit处理JavaScript渲染的页面
5、任务持久化:添加检查点机制,支持中断后恢复爬取
总结
这个教程展示了如何利用Scala和Akka构建一个高性能的并发网络爬虫。通过Actor模型,我们可以轻松实现:
1、高并发处理:使用Actor池并行处理多个请求
2、容错能力:Actor之间的隔离确保单个页面解析失败不会影响整体系统
3、流量控制:通过队列和速率限制避免过度请求
4、可扩展性:可以轻松添加新功能组件
Scala的函数式特性和强大的类型系统,结合Akka的Actor模型,使得构建健壮、高性能的爬虫系统变得更加容易。
看,用Scala写的爬虫不仅功能完整,还自带并发加速buff!Actor模型让各个抓取任务互不干扰,就算某个网页解析失败也不会拖垮整个系统。这种架构稍加改造就能应对更复杂的场景,比如分布式爬取或应对反爬机制。希望这个示例能让你体会到Scala在处理高并发任务时的独特魅力,下次需要抓取大规模数据时,不妨考虑让它大显身手!