皮尔逊相关(Pearson)和斯皮尔曼相关(Spearman)显著性检验


1. 皮尔逊相关(Pearson)显著性检验

检验方法:T检验(t-test)

  • 皮尔逊相关系数的显著性检验,通常用t检验。

  • 你用 scipy.stats.pearsonr 计算相关系数时,返回的p值就是t检验的结果。

  • 也可以手动用公式:

    t=rn−21−r2t = \frac{r \sqrt{n-2}}{\sqrt{1 - r^2}}t=1−r2 rn−2

    其中 ( r ) 为相关系数,( n ) 为样本量,自由度为 ( n-2 )。

结论:皮尔逊相关系数的显著性检验用t检验。


2. 斯皮尔曼相关(Spearman)显著性检验

检验方法:精确分布法或近似t检验

  • 斯皮尔曼相关系数的显著性检验,scipy.stats.spearmanr 直接返回p值,底层是用精确分布法或近似t检验(大样本时)。
  • 你只需看 spearmanr 返回的p值即可判断显著性。

结论 :斯皮尔曼相关系数的显著性检验直接用spearmanr的p值即可。


3. 总结表

相关系数类型 显著性检验方法 Python常用函数 p值含义
皮尔逊(Pearson) t检验 scipy.stats.pearsonr 相关性是否显著
斯皮尔曼(Spearman) 精确分布/近似t检验 scipy.stats.spearmanr 相关性是否显著

4. 代码举例

python 复制代码
from scipy.stats import pearsonr, spearmanr

# 皮尔逊
r, p_pearson = pearsonr(df['X'], df['Y'])
print('皮尔逊相关系数:', r, 'p值:', p_pearson)

# 斯皮尔曼
rho, p_spearman = spearmanr(df['X'], df['Y'])
print('斯皮尔曼相关系数:', rho, 'p值:', p_spearman)

结论

  • 皮尔逊相关系数用t检验(pearsonr的p值)。
  • 斯皮尔曼相关系数用精确分布法或近似t检验(spearmanr的p值)。

只需关注pearsonrspearmanr返回的p值即可判断显著性,无需手动实现检验。

相关推荐
小饼干超人32 分钟前
详解向量数据库中的PQ算法(Product Quantization)
人工智能·算法·机器学习
你撅嘴真丑1 小时前
第四章 函数与递归
算法·uva
漫随流水1 小时前
leetcode回溯算法(77.组合)
数据结构·算法·leetcode·回溯算法
玄冥剑尊1 小时前
动态规划入门
算法·动态规划·代理模式
mjhcsp1 小时前
P14987 全等(mjhcsp)
算法·题解·洛谷
(❁´◡`❁)Jimmy(❁´◡`❁)1 小时前
Atcoder abc441A~F 题解
算法·深度优先·图论
少林码僧2 小时前
2.30 传统行业预测神器:为什么GBDT系列算法在企业中最受欢迎
开发语言·人工智能·算法·机器学习·ai·数据分析
豆沙沙包?2 小时前
2026年--Lc343-1926. 迷宫中离入口最近的出口(图 - 广度优先搜索)--java版
java·算法·宽度优先
超级大福宝2 小时前
【力扣200. 岛屿数量】的一种错误解法(BFS)
数据结构·c++·算法·leetcode·广度优先
独自破碎E2 小时前
【动态规划=递归+记忆化存储】跳台阶
算法·动态规划