集成学习 —— 梯度提升树GBDT、XGBoost

目录

一、梯度提升树

[1、残差提升树 Boosting Decision Tree](#1、残差提升树 Boosting Decision Tree)

[2、梯度提升树 Gradient Boosting Decision Tree](#2、梯度提升树 Gradient Boosting Decision Tree)

二、构建案例

[1、 初始化弱学习器(CART树):](#1、 初始化弱学习器(CART树):)

[2、 构建第1个弱学习器](#2、 构建第1个弱学习器)

[3、 构建第2个弱学习器](#3、 构建第2个弱学习器)

[4、 构建第3个弱学习器](#4、 构建第3个弱学习器)

[5、 构建最终弱学习器](#5、 构建最终弱学习器)

[6、 构建总结](#6、 构建总结)

三、XGBoost

一、梯度提升树

1、残差提升树 Boosting Decision Tree

思想:通过拟合残差的思想来进行提升,残差:真实值 - 预测值

例如:

2、梯度提升树 Gradient Boosting Decision Tree

梯度提升树不再拟合残差,而是利用梯度下降的近似方法,利用损失函数的负梯度作为提升树算法中的残差近似值。

GBDT 拟合的负梯度就是残差。如果我们的 GBDT 进行的是分类问题,则损失函数变为 logloss,此时拟合的目标值就是该损失函数的负梯度值。

二、构建案例

已知:

1、 初始化弱学习器(CART树):

当模型预测值为何值时,会使得第一个弱学习器的平方误差最小,即:求损失函数对 f(xi) 的导数,并令导数为0。

2、 构建第1个弱学习器

根据负梯度的计算方法得到下表:

以此类推,计算所有切分点情况,得到:

由此得到,当 6.5 作为切分点时,平方损失最小,此时得到第1棵决策树。

3、 构建第2个弱学习器

以此类推,计算所有切分点情况,得到:

以3.5 作为切分点时,平方损失最小,此时得到第2棵决策树

4、 构建第3个弱学习器

以此类推,计算所有切分点情况,得到:

以6.5 作为切分点时,平方损失最小,此时得到第3棵决策树

5、 构建最终弱学习器

以 x=6 样本为例:输入到最终学习器中的结果 :(存在误差,说明学习器不够)

以此类推计算其他的预测值

6、 构建总结

  1. 初始化弱学习器(目标值的均值作为预测值)
  2. 迭代构建学习器,每一个学习器拟合上一个学习器的负梯度
  3. 直到达到指定的学习器个数
  4. 当输入未知样本时,将所有弱学习器的输出结果组合起来作为强学习器的输出

三、XGBoost

待补充..........

相关推荐
亚马逊云开发者13 分钟前
基于Amazon Q Developer实现IoT设备的Amazon Timestream性能与成本优化
人工智能
cyyt16 分钟前
深度学习周报(12.15~12.21)
人工智能·深度学习·最优传输
Blossom.11817 分钟前
大模型推理优化实战:连续批处理与PagedAttention性能提升300%
大数据·人工智能·python·神经网络·算法·机器学习·php
陈天伟教授21 分钟前
人工智能训练师认证教程(1)数据标注-Labelimg的使用教程
人工智能·神经网络·机器学习
Hcoco_me26 分钟前
Seq2Seq:Encoder-Decoder架构详解
人工智能·rnn·深度学习
江上鹤.14834 分钟前
Day44 训练和测试的规范写法
人工智能·深度学习·机器学习
Spring AI学习42 分钟前
Spring AI深度解析(11/50):异常处理与容错机制实战
java·人工智能·spring
小兔崽子去哪了43 分钟前
机器学习,KNN 算法
后端·python·机器学习
木头左1 小时前
结合基本面分析的LSTM量化交易模型入参设计原则
人工智能·rnn·lstm
HuggingFace1 小时前
流式数据集:效率提升 100 倍!
人工智能