集成学习 —— 梯度提升树GBDT、XGBoost

目录

一、梯度提升树

[1、残差提升树 Boosting Decision Tree](#1、残差提升树 Boosting Decision Tree)

[2、梯度提升树 Gradient Boosting Decision Tree](#2、梯度提升树 Gradient Boosting Decision Tree)

二、构建案例

[1、 初始化弱学习器(CART树):](#1、 初始化弱学习器(CART树):)

[2、 构建第1个弱学习器](#2、 构建第1个弱学习器)

[3、 构建第2个弱学习器](#3、 构建第2个弱学习器)

[4、 构建第3个弱学习器](#4、 构建第3个弱学习器)

[5、 构建最终弱学习器](#5、 构建最终弱学习器)

[6、 构建总结](#6、 构建总结)

三、XGBoost

一、梯度提升树

1、残差提升树 Boosting Decision Tree

思想:通过拟合残差的思想来进行提升,残差:真实值 - 预测值

例如:

2、梯度提升树 Gradient Boosting Decision Tree

梯度提升树不再拟合残差,而是利用梯度下降的近似方法,利用损失函数的负梯度作为提升树算法中的残差近似值。

GBDT 拟合的负梯度就是残差。如果我们的 GBDT 进行的是分类问题,则损失函数变为 logloss,此时拟合的目标值就是该损失函数的负梯度值。

二、构建案例

已知:

1、 初始化弱学习器(CART树):

当模型预测值为何值时,会使得第一个弱学习器的平方误差最小,即:求损失函数对 f(xi) 的导数,并令导数为0。

2、 构建第1个弱学习器

根据负梯度的计算方法得到下表:

以此类推,计算所有切分点情况,得到:

由此得到,当 6.5 作为切分点时,平方损失最小,此时得到第1棵决策树。

3、 构建第2个弱学习器

以此类推,计算所有切分点情况,得到:

以3.5 作为切分点时,平方损失最小,此时得到第2棵决策树

4、 构建第3个弱学习器

以此类推,计算所有切分点情况,得到:

以6.5 作为切分点时,平方损失最小,此时得到第3棵决策树

5、 构建最终弱学习器

以 x=6 样本为例:输入到最终学习器中的结果 :(存在误差,说明学习器不够)

以此类推计算其他的预测值

6、 构建总结

  1. 初始化弱学习器(目标值的均值作为预测值)
  2. 迭代构建学习器,每一个学习器拟合上一个学习器的负梯度
  3. 直到达到指定的学习器个数
  4. 当输入未知样本时,将所有弱学习器的输出结果组合起来作为强学习器的输出

三、XGBoost

待补充..........

相关推荐
rosmis3 分钟前
地铁轨道病害检测系统-软件开发日志-2-02
人工智能
天云数据9 分钟前
<span class=“js_title_inner“>“AI+” 实效落地指南|天云数据四大场景攻坚方案,为能源/消防/交通/康养精准赋能</span>
人工智能·能源
方见华Richard15 分钟前
递归对抗引擎RAE:AGI终极希望与内生安全范式革新,自指认知AI为碳硅共生必然主体
人工智能·交互·学习方法·原型模式·空间计算
OenAuth.Core22 分钟前
2026年AI甘特图工具深度对比:帮你选择最合适的甘特图软件
人工智能·甘特图
2501_9418372644 分钟前
多颜色玫瑰品种识别与分类_YOLO13-C3k2-PoolingFormer模型详解_1
人工智能·数据挖掘
新缸中之脑1 小时前
为什么我选 Codex
人工智能
yumgpkpm1 小时前
2026软件:白嫖,开源,外包,招标,晚进场(2025年下半年),数科,AI...中国的企业软件产业出路
大数据·人工智能·hadoop·算法·kafka·开源·cloudera
witAI1 小时前
**AI漫剧制作工具2025推荐,零成本实现专业级动画创作*
人工智能·python
冬奇Lab1 小时前
一天一个开源项目(第12篇):SoulX-Podcast - 多轮对话式播客生成,让AI语音更自然真实
人工智能·开源
风栖柳白杨1 小时前
【语音识别】一些音频的使用方法
人工智能·音视频·语音识别