集成学习 —— 梯度提升树GBDT、XGBoost

目录

一、梯度提升树

[1、残差提升树 Boosting Decision Tree](#1、残差提升树 Boosting Decision Tree)

[2、梯度提升树 Gradient Boosting Decision Tree](#2、梯度提升树 Gradient Boosting Decision Tree)

二、构建案例

[1、 初始化弱学习器(CART树):](#1、 初始化弱学习器(CART树):)

[2、 构建第1个弱学习器](#2、 构建第1个弱学习器)

[3、 构建第2个弱学习器](#3、 构建第2个弱学习器)

[4、 构建第3个弱学习器](#4、 构建第3个弱学习器)

[5、 构建最终弱学习器](#5、 构建最终弱学习器)

[6、 构建总结](#6、 构建总结)

三、XGBoost

一、梯度提升树

1、残差提升树 Boosting Decision Tree

思想:通过拟合残差的思想来进行提升,残差:真实值 - 预测值

例如:

2、梯度提升树 Gradient Boosting Decision Tree

梯度提升树不再拟合残差,而是利用梯度下降的近似方法,利用损失函数的负梯度作为提升树算法中的残差近似值。

GBDT 拟合的负梯度就是残差。如果我们的 GBDT 进行的是分类问题,则损失函数变为 logloss,此时拟合的目标值就是该损失函数的负梯度值。

二、构建案例

已知:

1、 初始化弱学习器(CART树):

当模型预测值为何值时,会使得第一个弱学习器的平方误差最小,即:求损失函数对 f(xi) 的导数,并令导数为0。

2、 构建第1个弱学习器

根据负梯度的计算方法得到下表:

以此类推,计算所有切分点情况,得到:

由此得到,当 6.5 作为切分点时,平方损失最小,此时得到第1棵决策树。

3、 构建第2个弱学习器

以此类推,计算所有切分点情况,得到:

以3.5 作为切分点时,平方损失最小,此时得到第2棵决策树

4、 构建第3个弱学习器

以此类推,计算所有切分点情况,得到:

以6.5 作为切分点时,平方损失最小,此时得到第3棵决策树

5、 构建最终弱学习器

以 x=6 样本为例:输入到最终学习器中的结果 :(存在误差,说明学习器不够)

以此类推计算其他的预测值

6、 构建总结

  1. 初始化弱学习器(目标值的均值作为预测值)
  2. 迭代构建学习器,每一个学习器拟合上一个学习器的负梯度
  3. 直到达到指定的学习器个数
  4. 当输入未知样本时,将所有弱学习器的输出结果组合起来作为强学习器的输出

三、XGBoost

待补充..........

相关推荐
猫头虎12 小时前
如何解决 pip install 编译报错 fatal error: hdf5.h: No such file or directory(h5py)问题
人工智能·python·pycharm·开源·beautifulsoup·ai编程·pip
龙赤子12 小时前
人工智能AI的大框架
人工智能
比奥利奥还傲.12 小时前
本地+AI+大模型自由用!Cherry+Studio打破局域网限制
人工智能
雪碧聊技术12 小时前
深度学习、机器学习、人工智能三者的关系
人工智能·深度学习·机器学习
β添砖java12 小时前
机器学习初级
人工智能·机器学习
陈奕昆12 小时前
n8n实战营Day3:电商订单全流程自动化·需求分析与流程拆解
大数据·开发语言·人工智能·自动化·需求分析·n8n
努力改掉拖延症的小白12 小时前
Intel笔记本也能部署大模型(利用Ultra系列gpu通过优化版ollama实现)
人工智能·ai·语言模型·大模型
优爱蛋白12 小时前
B细胞细胞因子:免疫系统的“信使军团“与疾病治疗的新前沿
人工智能·经验分享·健康医疗
陈奕昆13 小时前
n8n实战营Day1课时3:高频节点解析+Webhook表单同步Excel实操
人工智能·python·n8n
Eric.Lee202113 小时前
物理引擎MuJoCo 项目介绍
人工智能·机器人·仿真·robot·物理引擎·mujoco