决策树-面试题

1. 决策树基本概念​

​定义​ ​:一种树形结构分类模型,通过特征判断序列(内部节点)逐步决策,最终到达表示分类结果的叶子节点。

​结构组成​​:

  • ​内部节点​:特征判断条件(如"年龄>30?")
  • ​分支​:判断结果的路径("是"或"否")
  • ​叶子节点​:最终分类结果(如"拒绝贷款")

​2. 熵(Entropy)的作用​

​定义​ ​:信息论中度量随机变量不确定性的指标,计算公式:

​作用​​:

  • ​量化数据纯度​:熵越小,数据越纯净(如全为同一类别)
  • ​指导特征选择​:ID3/C4.5算法中,通过熵减(信息增益)选择分裂特征

​3. CART vs ID3/C4.5 的核心区别​

​维度​ ​ID3/C4.5​ ​CART​
​任务支持​ 仅分类 分类 + 回归
​树结构​ 多叉树 二叉树
​分裂准则​ ID3:信息增益 C4.5:信息增益率 分类:基尼指数 回归:平方误差最小化
​缺陷解决​ C4.5修正ID3的多值特征偏好 二叉树结构避免多值特征问题

​4. 节点切分依据​

不同算法使用不同分裂准则:

​算法​ ​分裂依据​ ​公式/说明​
​ID3​ 信息增益最大
​C4.5​ 信息增益率最大
​CART​ 基尼指数最小(分类) 平方误差最小(回归)

​5. 剪枝的原因与方法​

​为什么剪枝​​:

  • ​过拟合风险​:决策树过度学习训练集噪声
  • ​泛化需求​:提高模型在未知数据的表现

​常用剪枝方法​​:

​类型​ ​操作​ ​优缺点​
​预剪枝​ 树生成中提前停止分裂(如限制深度、叶节点样本数) ✅ 训练快 ❌ 可能欠拟合
​后剪枝​ 生成完整树后,自底向上替换子树为叶节点(如CCP代价复杂度剪枝) ✅ 保留有效分支 ❌ 计算开销大

​总结关键记忆点​​:

  1. ​熵和基尼指数​:衡量数据混乱度,指导特征选择
  2. ​算法差异​:CART的二叉树和回归能力是最大特色
  3. ​剪枝本质​:模型复杂度和泛化能力的trade-off
相关推荐
virtual_k1smet4 小时前
#等价于e * d ≡ 1 mod φ(n) #模逆元详解
人工智能·算法·机器学习
可触的未来,发芽的智生5 小时前
新奇特:神经网络的集团作战思维,权重共享层的智慧
人工智能·python·神经网络·算法·架构
_屈臣_5 小时前
卡特兰数【模板】(四个公式模板)
c++·算法
StarPrayers.6 小时前
基于PyTorch的CIFAR10加载与TensorBoard可视化实践
人工智能·pytorch·python·深度学习·机器学习
坚持编程的菜鸟6 小时前
LeetCode每日一题——交替合并字符串
c语言·算法·leetcode
悦悦子a啊6 小时前
[Java]PTA: jmu-Java-02基本语法-08-ArrayList入门
java·开发语言·算法
肖书婷6 小时前
人工智能-机器学习day4
人工智能·机器学习
xlq223227 小时前
12.排序(上)
数据结构·算法·排序算法
努力学习的小廉7 小时前
我爱学算法之—— 分治-快排
c++·算法
未知陨落7 小时前
LeetCode:77.买卖股票的最佳时机
算法·leetcode