Flink中的 BinaryRowData 以及大小端

背景

本文基于 Flink 1.17.0

写此文章的目的是为了说明 Flink 堆内和堆外内存以及 内部 BinaryRowData 行处理的优化。

分析

堆内和堆外内存

跟Spark的内存管理不一样,Flink 中的堆内和堆外一直都是存在的。

堆内内存(JVM Heap)存储用户对象和Flink 框架的运行时数据,而堆外内存(Off-heap Memory)包括用于网络通信的直接内存(Direct Memory)和用于第三方库(如RocksDB)的堆外内存(offheap Memory)。

分别可以通过 MemorySegmentFactory 的 wrap allocateUnpooledOffHeapMemory allocateOffHeapUnsafeMemory 方法来进行分配对应的堆内,直接内存以及堆外内存。无论是堆内还是堆外内存都是用 MemorySegment 来承载的。

BinaryRowData

关于该BinaryRowData的作用和Spark中一样

  1. 减少GC压力
  2. 不影响正常的数据操作,减少了数据存储内存,精确计算内存的使用情况
  3. 减少了序列化和反序列化的的消耗

Byte大小端

MemorySegment 类中,也存在中大小端的判断:

复制代码
 private static final boolean LITTLE_ENDIAN =
            (ByteOrder.nativeOrder() == ByteOrder.LITTLE_ENDIAN);

在Flink 中,数据需要经过序列化和反序列化才能在网络中传输或持久化存储。如果数据源的字节序与Flink 运行的机器的字节序不一致,就可能出现解析错误。通过区分大端和小端,Flink 能够正确地进行转换,确保数据的一致性。

相关推荐
zxsz_com_cn1 小时前
设备健康管理诊断报告生成:工业智能化的“决策引擎”与效率革命
大数据
FPGA小迷弟6 小时前
ChatGPT回答用AI怎么怎么赚钱
大数据·人工智能
AllData公司负责人6 小时前
实时开发平台(Streampark)--Flink SQL功能演示
大数据·前端·架构·flink·开源
小坏讲微服务8 小时前
MaxWell中基本使用原理 完整使用 (第一章)
大数据·数据库·hadoop·sqoop·1024程序员节·maxwell
百***628510 小时前
MySQL 常用 SQL 语句大全
数据库·sql·mysql
百***69710 小时前
MySQL数据库(SQL分类)
数据库·sql·mysql
勇往直前plus10 小时前
ElasticSearch详解(篇一)
大数据·elasticsearch·jenkins
影子240111 小时前
oralce创建种子表,使用存储过程生成最大值sql,考虑并发,不考虑并发的脚本,plsql调试存储过程,java调用存储过程示例代码
java·数据库·sql
武子康11 小时前
Java-172 Neo4j 访问方式实战:嵌入式 vs 服务器(含 Java 示例与踩坑)
java·服务器·数据库·sql·spring·nosql·neo4j
一只小青团13 小时前
Hadoop之HDFS
大数据·hadoop·分布式