解决AI幻觉,只能死磕模型?OpenAI给出不一样的思路

大家应该都被 AI 坑过:

问它一些不懂的问题,它并不会告诉你它不会,而是给你编造一个看起来非常靠谱的答案,语气笃定、结构完整,但实际上,全都是无中生有。

这就是当前这波大模型 AI 最显著的一个问题------幻觉。

最近,OpenAI 发布了一篇论文,专门解释了 AI 为什么爱瞎编。其中的思路和例子都特别直观,忍不住想给大家分享一下。

简单概括,就是模型评价的激励方式,错误地导致模型为了更高的激励,去猜测答案。

文中举了一个猜生日的例子:

假设问 AI 张三的生日(它并不知道),如果 AI 猜测,那就会有 1/365 的概率猜对,但如果回答"不知道",那铁定不会正确。

经过成千上万道类似的评价题目后,聪明的 AI 很快就 get 到:

"猜,可能赢;不猜,一定输。"

甚至,越聪明的模型,越容易领悟到这个准则,然后越容易出现"幻觉"问题,比如,DeepSeek。

同时,Open AI 也提出了一个解决方法,"对自信的错误进行比不确定性更重的惩罚",以此引导模型更加的务实和可靠。

思路其实挺简单的,但这个简单的思路却非常有效,毕竟 GPT-5 都已经从写作高手变成编程高手了。

这个思路不仅训练 AI 时可以采用,我们使用 AI 时,也可以尝试利用一下。

比如,在提示词里加一句:

"如果不确定,请告诉我'不知道'。"

你会发现 ------ AI 更稳更靠谱了~

相关推荐
南阳木子6 小时前
GEO:AI 时代流量新入口,四川嗨它科技如何树立行业标杆? (2025年10月最新版)
人工智能·科技
oe10196 小时前
好文与笔记分享 A Survey of Context Engineering for Large Language Models(中)
人工智能·笔记·语言模型·agent开发
寒秋丶7 小时前
Milvus:集合(Collections)操作详解(三)
数据库·人工智能·python·ai·ai编程·milvus·向量数据库
寒秋丶7 小时前
Milvus:Schema详解(四)
数据库·人工智能·python·ai·ai编程·milvus·向量数据库
CAD老兵7 小时前
量化技术:如何让你的 3D 模型和 AI 模型瘦身又飞快
人工智能·深度学习·机器学习
算法与编程之美7 小时前
探索不同的优化器对分类精度的影响和卷积层的输入输出的shape的计算公式
人工智能·深度学习·机器学习·分类·数据挖掘
大千AI助手7 小时前
微软SPARTA框架:高效稀疏注意力机制详解
人工智能·深度学习·神经网络·llm·大千ai助手·sparta·稀疏注意力机制
林九生7 小时前
【人工智能】使用 vLLM 高效部署大语言模型:以 secGpt14b 为例
人工智能·语言模型·自然语言处理
云茧7 小时前
机器学习中的Hello World:线性回归(一)
人工智能·机器学习·线性回归
他们叫我技术总监7 小时前
从开发者视角深度评测:ModelEngine 与 AI 开发平台的技术博弈
java·人工智能·dubbo·智能体·modelengine