neo4j数据库创建范例(SQL文)

SQL文:

sql 复制代码
SELECT c.id, c.name, o.amount
FROM customers c
JOIN orders o ON c.id = o.customer_id
  1. 先创建节点(Table、Column)。
  2. 再 MATCH 出节点,建立关系

✅ 针对你的 SQL 的完整 Cypher

cypher 复制代码
// -----------------------------
// 1. 创建表节点
// -----------------------------
MERGE (t_customers:Table {name: "customers"});
MERGE (t_orders:Table {name: "orders"});

// -----------------------------
// 2. 创建字段节点
// -----------------------------
MERGE (col_c_id:Column {name: "id", table: "customers"});
MERGE (col_c_name:Column {name: "name", table: "customers"});
MERGE (col_o_amount:Column {name: "amount", table: "orders"});
MERGE (col_o_customer_id:Column {name: "customer_id", table: "orders"});

// -----------------------------
// 3. 建立表-字段关系
// -----------------------------
MATCH (t_customers:Table {name: "customers"}), (col_c_id:Column {name: "id", table:"customers"})
MERGE (t_customers)-[:HAS_COLUMN]->(col_c_id);

MATCH (t_customers:Table {name: "customers"}), (col_c_name:Column {name: "name", table:"customers"})
MERGE (t_customers)-[:HAS_COLUMN]->(col_c_name);

MATCH (t_orders:Table {name: "orders"}), (col_o_amount:Column {name: "amount", table:"orders"})
MERGE (t_orders)-[:HAS_COLUMN]->(col_o_amount);

MATCH (t_orders:Table {name: "orders"}), (col_o_customer_id:Column {name: "customer_id", table:"orders"})
MERGE (t_orders)-[:HAS_COLUMN]->(col_o_customer_id);

// -----------------------------
// 4. 建立字段间 JOIN 关系
// -----------------------------
MATCH (col_c_id:Column {name:"id", table:"customers"}),
      (col_o_customer_id:Column {name:"customer_id", table:"orders"})
MERGE (col_c_id)-[:JOINS {on:"="}]->(col_o_customer_id);

🔍 查询验证

cypher 复制代码
MATCH (t:Table)-[:HAS_COLUMN]->(c:Column)
RETURN t.name AS table, c.name AS column;

MATCH (c1:Column)-[j:JOINS]->(c2:Column)
RETURN c1.table AS table1, c1.name AS column1,
       j.on AS condition,
       c2.table AS table2, c2.name AS column2;

结果应该是:

表-字段

复制代码
table      | column
-----------+------------
customers  | id
customers  | name
orders     | amount
orders     | customer_id

JOIN 关系

复制代码
table1     | column1 | condition | table2 | column2
-----------+---------+-----------+--------+------------
customers  | id      | =         | orders | customer_id

完整的扩展方案,把 SQL JOIN 的信息 全部带进 Neo4j 的关系属性里。


1. SQL 信息里能提取的点

像你这句:

sql 复制代码
SELECT c.id, c.name, o.amount
FROM customers c
JOIN orders o ON c.id = o.customer_id;

可抽取出来的 JOIN 元数据:

  • 关系条件c.id = o.customer_id
  • 连接符号=
  • JOIN 类型INNER JOIN(省略 INNER 默认就是 INNER)
  • 左表字段customers.id
  • 右表字段orders.customer_id

2. 在 Neo4j 里扩展关系属性

建关系时,不只存 on:"=",而是存完整信息:

cypher 复制代码
MERGE (col_c_id:Column {name:"id", table:"customers"})
MERGE (col_o_customer_id:Column {name:"customer_id", table:"orders"})
MERGE (col_c_id)-[:JOINS {
    condition: "c.id = o.customer_id",
    operator: "=",
    join_type: "INNER",
    left_table: "customers",
    left_column: "id",
    right_table: "orders",
    right_column: "customer_id"
}]->(col_o_customer_id);

3. 查询结果更直观

cypher 复制代码
MATCH (c1:Column)-[j:JOINS]->(c2:Column)
RETURN j.join_type AS join_type,
       j.condition AS condition,
       j.left_table AS left_table,
       j.left_column AS left_column,
       j.operator AS operator,
       j.right_table AS right_table,
       j.right_column AS right_column;

结果就会是:

复制代码
join_type | condition               | left_table | left_column | operator | right_table | right_column
----------+--------------------------+------------+-------------+----------+-------------+--------------
INNER     | c.id = o.customer_id    | customers  | id          | =        | orders      | customer_id

4. 通用做法

  • condition:存完整 SQL 条件
  • operator :存 =>< 这种符号
  • join_type :存 INNER / LEFT / RIGHT / FULL
  • left_table / right_table:存表名
  • left_column / right_column:存字段名

这样以后你要还原 SQL JOIN,或者做可视化,都很方便。


相关推荐
重生之绝世牛码1 分钟前
Linux软件安装 —— Redis集群安装(三主三从)
大数据·linux·运维·数据库·redis·数据库开发·软件安装
知识分享小能手13 分钟前
Oracle 19c入门学习教程,从入门到精通,Oracle 过程、函数、触发器和包详解(7)
数据库·学习·oracle
l1t16 分钟前
净化SQL的PL/pgSQL函数
数据库·sql·postgresql
程序员敲代码吗17 分钟前
如何从Python初学者进阶为专家?
jvm·数据库·python
Hello.Reader22 分钟前
Flink MongoDB SQL Connector Scan/Lookup/Sink 全打通,Upsert、分片集群与缓存一篇讲透
sql·mongodb·flink
liux352824 分钟前
MySQL日志系统全面解析:从基础到高级管理(六)
数据库·mysql·oracle
Mr_Xuhhh32 分钟前
存储过程和触发器的总结
sql
a努力。38 分钟前
宇树Java面试被问:数据库死锁检测和自动回滚机制
java·数据库·elasticsearch·面试·职场和发展·rpc·jenkins
数据知道40 分钟前
PostgreSQL实战:详解权限设置与管理全流程
数据库·postgresql
Dontla1 小时前
Database Schema Introduction (structure of data, NoSQL schema)
数据库·nosql