论文阅读:openai 2025 Why Language Models Hallucinate

官网 Why language models hallucinate
pdf Why Language Models Hallucinate

OpenAI 最新论文: 为什么大模型会产生幻觉 ?

OpenAI新幻觉论文惹争议!GPT-5拉胯是测试基准有问题??

速览

语言模型"幻觉"背后的真相竟是训练机制?

语言模型的"幻觉"问题一直是困扰AI领域的难题。最近,OpenAI发布的论文《Why Language Models Hallucinate》深入剖析了这一现象,提出了令人耳目一新的观点。

论文指出,语言模型产生幻觉的根本原因在于其训练和评估机制。当前的训练方式倾向于奖励模型"猜测",而非承认不确定性。例如,在多项选择题式的评估中,模型答对得满分,答错或不答则不得分。这种机制促使模型在面对不确定问题时选择冒险猜测,以获取更高评分,从而导致了看似合理却错误的"幻觉"陈述。

论文还通过严谨的统计分析,将复杂的生成任务归约为二元分类问题,揭示了幻觉与分类错误之间的数学关系。研究表明,即使在理想化的无错误训练数据下,现有的统计学习目标也会导致模型产生错误,进而引发幻觉。此外,模型的架构和能力局限性也会加剧这一问题。

更值得关注的是,论文提出了解决方案:重新设计评估指标,引入"显式置信度目标",明确告知模型评分规则和置信度要求。例如,在评估问题中加入惩罚机制,如答错倒扣分,以此抑制模型的胡乱猜测行为。这种改变不仅能够引导模型做出更诚实的风险评估,还能使评估过程更加客观公正。

该论文的发布引发了广泛讨论,它不仅为理解语言模型的幻觉现象提供了新的视角,更为未来的模型训练和评估指明了方向。或许,一场针对评估体系的变革即将拉开帷幕,而这场变革有望从根本上解决语言模型的幻觉问题,让AI模型变得更加可靠和可信。

相关推荐
yuhaiqun19891 天前
10分钟快速get:零基础AI人工智能学习路线
人工智能·学习
m0_650108241 天前
Co-MTP:面向自动驾驶的多时间融合协同轨迹预测框架
论文阅读·人工智能·自动驾驶·双时间域融合·突破单车感知局限·帧间轨迹预测·异构图transformer
向阳逐梦1 天前
电子烟的4种屏幕驱动集成语音方案介绍
人工智能·语音识别
蓝耘智算1 天前
蓝耘元生代GPU算力调度云平台深度解析:高性价比算力云与GPU算力租赁首选方案
人工智能·ai·gpu算力·蓝耘
ckjr0071 天前
2025 创始人 IP+AI 峰会:见证时代分水岭
人工智能·创客匠人·创客匠人万人峰会
geneculture1 天前
2025对2023《融智学导读》升级版,第三章:智能化双字棋盘软件(将智能化双字棋盘定位为第二次认知大飞跃的工作母机是一个极其精准和有力的论断)
人工智能·信息科学·融智学的重要应用·信智序位·全球软件定位系统
ccLianLian1 天前
计算机视觉·ZegFormer
人工智能·计算机视觉
i查拉图斯特拉如是1 天前
Coze工作流意图识别
人工智能·大模型·工作流·意图识别·coze
创客匠人老蒋1 天前
穿越周期的发展动力:创始人IP与AI融合下的成长路径解析
人工智能·创客匠人全球ip+ai高峰论坛·全球创始人ip+ai万人峰会
灰灰学姐1 天前
注意力机制
人工智能·深度学习·机器学习