基于密集型复杂城市场景下求解无人机三维路径规划的Q-learning算法研究(matlab)

目录

[一 主要内容](#一 主要内容)

[二 研究背景与意义](#二 研究背景与意义)

[三 相关理论基础](#三 相关理论基础)

[四 运行结果](#四 运行结果)

[五 下载链接](#五 下载链接)


一 主要内容

随着无人机在城市物流配送、航拍测绘等领域应用拓展,密集型复杂城市场景下的三维路径规划愈发关键。该场景障碍物密集、三维空间约束复杂且实时性要求高,传统算法难以满足需求。Q-learning算法作为强化学习方法,无需环境模型、可试错学习,适用于此类场景。本文深入研究基于Q-learning的无人机三维路径规划,合理定义状态空间、动作空间与奖励函数,让无人机自主学习最优路径。实验表明,算法能有效避障,规划出较优飞行路径,具备高成功率与适应性。程序采用matlab编写,注释清楚,运行可靠!

二 研究背景与意义

无人机技术在城市应用广泛,但城市场景复杂,建筑物、信号塔等障碍物密集,飞行空间受限,还需考虑飞行安全、能量消耗等。

传统路径规划算法(如A*、Dijkstra算法)在三维复杂空间计算复杂度高、难适应动态环境,无法满足无人机在城市环境的实时性与最优性需求。

强化学习通过与环境交互学习最优策略,为无人机路径规划提供新思路。Q-learning算法无需环境模型、可试错学习,能根据环境奖励信号调整策略,适合复杂城市场景,研究其在无人机三维路径规划的应用具有现实意义。

三 相关理论基础

四 运行结果

五 下载链接

相关推荐
前端炒粉3 小时前
35.LRU 缓存
开发语言·javascript·数据结构·算法·缓存·js
断剑zou天涯5 小时前
【算法笔记】窗口内最大值或最小值的更新结构
java·笔记·算法
smj2302_796826525 小时前
解决leetcode第3753题范围内总波动值II
python·算法·leetcode
骑着猪去兜风.7 小时前
线段树(二)
数据结构·算法
fengfuyao9858 小时前
竞争性自适应重加权算法(CARS)的MATLAB实现
算法
散峰而望8 小时前
C++数组(二)(算法竞赛)
开发语言·c++·算法·github
leoufung8 小时前
LeetCode 92 反转链表 II 全流程详解
算法·leetcode·链表
wyhwust9 小时前
交换排序法&冒泡排序法& 选择排序法&插入排序的算法步骤
数据结构·算法·排序算法
利刃大大9 小时前
【动态规划:背包问题】完全平方数
c++·算法·动态规划·背包问题·完全背包
t198751289 小时前
基于MATLAB的指纹识别系统完整实现
开发语言·matlab