基于密集型复杂城市场景下求解无人机三维路径规划的Q-learning算法研究(matlab)

目录

[一 主要内容](#一 主要内容)

[二 研究背景与意义](#二 研究背景与意义)

[三 相关理论基础](#三 相关理论基础)

[四 运行结果](#四 运行结果)

[五 下载链接](#五 下载链接)


一 主要内容

随着无人机在城市物流配送、航拍测绘等领域应用拓展,密集型复杂城市场景下的三维路径规划愈发关键。该场景障碍物密集、三维空间约束复杂且实时性要求高,传统算法难以满足需求。Q-learning算法作为强化学习方法,无需环境模型、可试错学习,适用于此类场景。本文深入研究基于Q-learning的无人机三维路径规划,合理定义状态空间、动作空间与奖励函数,让无人机自主学习最优路径。实验表明,算法能有效避障,规划出较优飞行路径,具备高成功率与适应性。程序采用matlab编写,注释清楚,运行可靠!

二 研究背景与意义

无人机技术在城市应用广泛,但城市场景复杂,建筑物、信号塔等障碍物密集,飞行空间受限,还需考虑飞行安全、能量消耗等。

传统路径规划算法(如A*、Dijkstra算法)在三维复杂空间计算复杂度高、难适应动态环境,无法满足无人机在城市环境的实时性与最优性需求。

强化学习通过与环境交互学习最优策略,为无人机路径规划提供新思路。Q-learning算法无需环境模型、可试错学习,能根据环境奖励信号调整策略,适合复杂城市场景,研究其在无人机三维路径规划的应用具有现实意义。

三 相关理论基础

四 运行结果

五 下载链接

相关推荐
AndrewHZ23 分钟前
【图像处理基石】图像滤镜的算法原理:从基础到进阶的技术解析
图像处理·python·opencv·算法·计算机视觉·滤镜·cv
lxmyzzs24 分钟前
【图像算法 - 30】基于深度学习的PCB板缺陷检测系统: YOLOv11 + UI界面 + 数据集实现
人工智能·深度学习·算法·yolo·缺陷检测
gihigo199844 分钟前
基于萤火虫算法(FA)优化支持向量机(SVM)参数的分类实现
算法·支持向量机·分类
py有趣1 小时前
LeetCode算法学习之移动0
学习·算法·leetcode
lixinnnn.1 小时前
算法总结篇(枚举-分治)
算法·1024程序员节
on_pluto_1 小时前
【基础复习3】决策树
算法·决策树·机器学习
熬了夜的程序员1 小时前
【LeetCode】90. 子集 II
数据结构·算法·leetcode·链表·职场和发展·排序算法
moisture1 小时前
集合通信原语
后端·算法
熬了夜的程序员1 小时前
【LeetCode】91. 解码方法
算法·leetcode·链表·职场和发展·排序算法
大数据张老师1 小时前
数据结构——内部排序算法的选择和应用
数据结构·算法·排序算法