神经网络常见层速查表

神经网络常见层速查表

本文总结了深度学习中常见的"层 (Layer)",包括简称、全称、使用场景和作用,便于快速学习。


🔹 1. 全连接层 (Fully Connected Layer)

  • 简称:FC / Dense / Linear
  • 全称:Fully Connected Layer
  • PyTorchnn.Linear(in_features, out_features)
  • 使用场景:通用任务(分类、回归、MLP)
  • 作用:输入和输出的每个节点都相连,适合通用函数拟合。

🔹 2. 卷积层 (Convolutional Layer)

  • 简称:Conv
  • 全称:Convolutional Layer
  • PyTorchnn.Conv1d, nn.Conv2d, nn.Conv3d
  • 使用场景:图像、视频、语音
  • 作用:用卷积核提取局部特征,权重共享,参数量少。

🔹 3. 池化层 (Pooling Layer)

  • 简称:Pooling
  • 全称:Pooling Layer
  • PyTorchnn.MaxPool2d, nn.AvgPool2d
  • 使用场景:CNN 中常见
  • 作用:缩小特征图尺寸,保留主要特征,降低计算量。

🔹 4. 循环层 (Recurrent Layer)

  • 简称:RNN 系列
  • 全称:Recurrent Neural Network Layer
  • PyTorchnn.RNN, nn.LSTM, nn.GRU
  • 使用场景:文本、语音、时间序列预测
  • 作用 :处理序列数据,记忆历史信息。
    • RNN: 基础循环网络
    • LSTM: Long Short-Term Memory,解决长依赖问题
    • GRU: Gated Recurrent Unit,简化版 LSTM

🔹 5. 归一化层 (Normalization Layer)

  • 简称:BN / LN / IN
  • 全称:Batch Normalization / Layer Normalization / Instance Normalization
  • PyTorchnn.BatchNorm1d, nn.LayerNorm, nn.InstanceNorm2d
  • 使用场景:各种深度学习模型
  • 作用:稳定训练,加快收敛。

🔹 6. 正则化层 (Regularization Layer)

  • 简称:Dropout
  • 全称:Dropout Layer
  • PyTorchnn.Dropout(p=0.5)
  • 使用场景:防止过拟合
  • 作用:训练时随机"丢弃"部分神经元连接。

🔹 7. 注意力层 (Attention Layer)

  • 简称:Attention
  • 全称:Attention Layer / Multi-Head Attention
  • PyTorchnn.MultiheadAttention
  • 使用场景:NLP,Transformer,LLM
  • 作用:让模型选择性关注输入的重要部分。

🔹 8. 嵌入层 (Embedding Layer)

  • 简称:Embedding
  • 全称:Embedding Layer
  • PyTorchnn.Embedding(num_embeddings, embedding_dim)
  • 使用场景:自然语言处理(词向量表示)
  • 作用:将离散的类别(如单词 ID)映射为稠密向量。

🔹 9. 上采样层 (Upsampling Layer)

  • 简称:Deconv / Transposed Conv
  • 全称:Upsampling Layer / Deconvolution Layer
  • PyTorchnn.ConvTranspose2d, nn.Upsample
  • 使用场景:生成模型(GAN)、图像分割 (U-Net)
  • 作用:扩大特征图尺寸,重建细节信息。

📌 总结

类别 简称 全称 使用场景 作用
全连接层 FC Fully Connected Layer 分类、回归 输入输出全连接
卷积层 Conv Convolutional Layer 图像、语音 提取局部特征
池化层 Pooling Pooling Layer CNN 降维、提取主要特征
循环层 RNN/LSTM/GRU Recurrent Neural Network Layer 序列数据 记忆历史信息
归一化层 BN/LN/IN Batch/Layer/Instance Norm 通用 稳定训练
正则化层 Dropout Dropout Layer 防过拟合 随机丢弃连接
注意力层 Attention Attention Layer NLP/Transformer 选择性关注
嵌入层 Embedding Embedding Layer NLP 类别转稠密向量
上采样层 Deconv Deconvolution Layer GAN/U-Net 放大特征图

✍️ 一句话记忆:

全连接最通用,卷积看图像,循环管时间,归一化保稳定,Dropout 防过拟合,注意力会聚焦,嵌入层懂语义,上采样能重建。

相关推荐
andyguo20 小时前
AI模型测评平台工程化实战十二讲(第五讲:大模型测评分享功能:安全、高效的结果展示与协作)
人工智能·安全·c#
ACEEE122220 小时前
解读DeepSeek-V3.2-Exp:基于MLA架构的Lightning Index如何重塑长上下文效率
人工智能·深度学习·算法·架构·deep
用户51914958484521 小时前
全面解析DoS攻击防护与应对策略
人工智能·aigc
程序员大雄学编程21 小时前
「机器学习笔记2」机器学习系统设计:从理论到实践
人工智能·笔记·机器学习
汐汐咯21 小时前
基于PyTorch实现的MNIST手写数字识别神经网络笔记
pytorch·笔记·神经网络
金井PRATHAMA21 小时前
框架系统的多维赋能——论其对自然语言处理深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
面壁的熊猫21 小时前
目标检测概述
人工智能·目标检测·计算机视觉
Learn Beyond Limits21 小时前
Using per-item Features|使用每项特征
人工智能·python·神经网络·算法·机器学习·ai·吴恩达
石臻臻的杂货铺21 小时前
如何让AI实现自动化 —— PlayWright MCP 实测
运维·人工智能·自动化
之墨_21 小时前
【大语言模型】—— Transformer的QKV及多头注意力机制图解解析
人工智能·语言模型·transformer