[智能算法]可微的神经网络搜索算法-FBNet

一、概述

相较于基于强化学习的NAS,可微NAS能直接使用梯度下降更新模型结构超参数,其中较为有名的算法就是DARTS,其具体做法如下。

首先,用户需要定义一些**候选模块,**这些模块内部结构可以互不相同(如设置不同种类和数量的卷积,使用不同种类的连接结构等);其次,用户也需要指定神经网络的层数,每一层由候选模块的其中之一构成。

由于搜索空间 =(其中为候选模块种类,为预先指定的神经网络层数)巨大,为了从庞大的搜索空间中找到合适的结构,需要引入superNet

二、SuperNet

以下内容均基于论文:FBNethttps://openaccess.thecvf.com/content_CVPR_2019/papers/Wu_FBNet_Hardware-Aware_Efficient_ConvNet_Design_via_Differentiable_Neural_Architecture_Search_CVPR_2019_paper.pdf

2.1模型结构

这里以SuperNet 中的某一层为例,设置候选模块一共9种,这层superNet由9种不同的模块并联而成。输入向量在候选模块处理后分别得到9个向量,这个处理过程记作:,其中为模块中的权重。将这些向量进行加权求和,这些权重记作,所有之和为1(由softmax计算得到),权重就是模型要学习的神经网络结构超参数

通过堆叠上述模块,组成一个完整的superNet,经过训练,每一层最终会保留一个模块。

2.2训练

将superNet的候选模块一共9个,记作;设superNet一共20层,记作;得第层中第个模块的参数记作,故,这两个即为需要训练并学习的参数。superNet做出的预测记作

交叉熵损失函数可以写作,在这个损失函数中,由于是关于的函数,且两者可微,故损失函数能通过传递给,所以可以直接使用反向梯度传播更新模型。

基于学习到的,我们可以计算出superNet中没一层中每个模块的权重 ,对于每层而言,选取其中权重最大的模块作为该层的结构,这些模块串联即可得到整个模型的结构,如下图所示。

三、使用额外的性能指标优化superNet

以应用于移动设备的轻量化神经网络举例,这类神经网络由于需要考虑移动设备的算力限制,往往需要延迟(latency,推理时间)越小越好。

可以事先测量每个候选模块的平均延迟,计算这一层中每个模块的延迟加权平均,如下图所示。

将20层网络中的延迟求和,得到:,其中的定义在2.2节中已经给出,可以进一步记作,其中的为计算得到的常数。

损失函数为:,其中可以决定牺牲多少准确率来换取计算速度。

另外也可以使用,作为损失函数,效果和上式相同。

相关推荐
147API1 小时前
60,000 星的代价:解析 OpenClaw 的架构设计与安全教训
人工智能·安全·aigc·clawdbot·moltbot·openclaw
audyxiao0011 小时前
智能交通顶刊TITS论文分享|如何利用驾驶感知世界模型实现无信号灯路口自动驾驶?
人工智能·机器学习·自动驾驶·tits
lisw051 小时前
氛围炒股概述!
大数据·人工智能·机器学习
hjs_deeplearning1 小时前
文献阅读篇#16:自动驾驶中的视觉语言模型:综述与展望
人工智能·语言模型·自动驾驶
爱喝可乐的老王2 小时前
PyTorch深度学习参数初始化和正则化
人工智能·pytorch·深度学习
杭州泽沃电子科技有限公司5 小时前
为电气风险定价:如何利用监测数据评估工厂的“电气安全风险指数”?
人工智能·安全
Godspeed Zhao7 小时前
自动驾驶中的传感器技术24.3——Camera(18)
人工智能·机器学习·自动驾驶
顾北129 小时前
MCP协议实战|Spring AI + 高德地图工具集成教程
人工智能
wfeqhfxz25887829 小时前
毒蝇伞品种识别与分类_Centernet模型优化实战
人工智能·分类·数据挖掘
中杯可乐多加冰9 小时前
RAG 深度实践系列(七):从“能用”到“好用”——RAG 系统优化与效果评估
人工智能·大模型·llm·大语言模型·rag·检索增强生成