前言
本文使用FastAPI+Streamlit实现一个流式响应类ChatGPT的LLM应用,这里只是一个demo,后续会基于此实现一个完整的MCP Client + MCP Server的MCP应用。
Streamlit是专为机器学习和数据科学项目打造的开源Python库,它允许开发者快速创建美观的交互式Web应用,而无需前端开发经验。通过简单的Python脚本,就能构建出功能丰富的数据应用界面。而且官方文档就有ChatBot的示例,直接拿过来稍微修改下就能使用了,上手起来非常简单。
之所以不直接在Streamlit实现MCP Client,是因为MCP SDK的方法几乎都是异步方法,而Streamlit仅支持同步方法,因此我们需要一个中间层来集成MCP Client,而这个中间层我用的就是FastAPI。通过FastAPI实现流式响应,然后在Streamlit再进行流式处理。
用Streamlit实现一个简单的ChatBot
本文大部分基于Streamit的chatbot示例,没做什么改动,只是先尝试下如何使用streamlit。其中pkg.cfg
模块提供一些配置信息,后面也都会用到,逻辑比较简单,所以这里就不贴上了,最后的补充部分再贴上。
python
import streamlit as st
from langchain_openai import ChatOpenAI
from pkg.config import cfg
with st.sidebar:
st.button("Clear Chat", on_click=lambda: st.session_state.pop("messages", None), width="stretch")
st.title("MCP Chatbot")
st.caption("🚀 A Streamlit chatbot powered by Qwen")
llm = ChatOpenAI(
base_url=cfg.llm_base_url,
model=cfg.llm_model,
api_key=cfg.llm_api_key,
temperature=0.3,
)
# Initialize chat history
if "messages" not in st.session_state:
st.session_state["messages"] = []
# Display chat messages from history on app rerun
for msg in st.session_state.messages:
st.chat_message(msg["role"]).markdown(msg["content"])
# React to user input
if prompt := st.chat_input(placeholder="What's up?"):
st.session_state.messages.append({"role": "user", "content": prompt})
# st.chat_message("user").write(prompt)
with st.chat_message("user"):
st.markdown(prompt)
def steam_llm():
for chunk in llm.stream(input=st.session_state.messages):
yield chunk.content
with st.chat_message("assistant"):
msg = st.write_stream(steam_llm())
st.session_state.messages.append({"role": "assistant", "content": msg})
在上述代码中,我们创建了一个基础的聊天机器人应用:
- 使用Streamlit的侧边栏添加了清除聊天记录的按钮
- 初始化了Qwen大语言模型
- 实现了聊天历史记录的存储和显示
- 通过
llm.stream
方法实现了流式响应,在用户界面上逐字显示AI回复
FastAPI实现流式响应和客户端流式处理
FastAPI的StreamingResponse
实现了流式响应,requests、httpx、aiohttp等http客户端模块都支持流式处理,这里以httpx为例
服务端
python
from http import HTTPStatus
from typing import Sequence
import uvicorn
from fastapi import FastAPI
from fastapi.responses import (JSONResponse, PlainTextResponse,
StreamingResponse)
from langchain_core.messages import AIMessage, HumanMessage
from langchain_openai import ChatOpenAI
from pydantic import BaseModel
from pkg.config import cfg
from pkg.log import logger
app = FastAPI()
class Message(BaseModel):
role: str
content: str
class UserAsk(BaseModel):
thread_id: str
messages: Sequence[Message]
llm = ChatOpenAI(
model=cfg.llm_model,
api_key=cfg.llm_api_key,
base_url=cfg.llm_base_url,
temperature=0.3,
)
async def generate_response(messages: Sequence[Message]):
"""一个异步生成器,用于实时生成文本"""
msgs = []
for m in messages:
if m.role in ("human", "user"):
msgs.append(HumanMessage(content=m.content))
elif m.role in ("ai", "assistant"):
msgs.append(AIMessage(content=m.content))
else:
print(f"Unknown role: {m.role}")
async for chunk in llm.astream(msgs):
# Ensure only string is yielded
if hasattr(chunk, "content"):
yield str(chunk.content)
else:
yield str(chunk)
@app.get("/health")
async def health():
return PlainTextResponse(content="ok", status_code=HTTPStatus.OK)
@app.post("/stream")
async def post_ask_stream(user_ask: UserAsk):
logger.info(f"user_ask: {user_ask}")
if not user_ask.messages:
return JSONResponse(content={"error": "query is empty"}, status_code=HTTPStatus.BAD_REQUEST)
generator = generate_response(user_ask.messages)
return StreamingResponse(generator, media_type="text/event-stream")
if __name__ == "__main__":
uvicorn.run(app, host="127.0.0.1", port=8000)
在服务端代码中:
- 我们定义了两个数据模型:
Message
,用于处理聊天消息的格式 - 使用
ChatOpenAI
初始化语言模型 generate_response
函数是一个异步生成器,将聊天历史转换为LangChain消息格式并流式生成回复/stream
端点接收用户消息并返回流式响应/health
端点用于健康检查
客户端流式处理示例
python
import asyncio
import httpx
def test_sync_stream():
"""同步方式测试流式响应"""
print("=== 同步方式测试流式响应 ===")
with httpx.stream("POST", "http://127.0.0.1:8000/stream",
json={
"thread_id": "test_thread_1",
"messages":[{"role": "user", "content": "你好,请介绍一下你自己"}],
}) as response:
print("响应状态码:", response.status_code)
for chunk in response.iter_text():
if chunk:
print(chunk, end='', flush=True)
print("\n" + "="*50 + "\n")
async def test_async_stream():
"""异步方式测试流式响应"""
print("=== 异步方式测试流式响应 ===")
async with httpx.AsyncClient() as client:
async with client.stream("POST", "http://127.0.0.1:8000/stream",
json={
"thread_id": "test_thread_2",
"messages": [{"role": "user", "content": "写一首关于夏天雨天的现代诗"}]
}) as response:
print("响应状态码:", response.status_code)
async for chunk in response.aiter_text():
if chunk:
print(chunk, end='', flush=True)
print("\n" + "="*50 + "\n")
def test_health_endpoint():
"""测试健康检查端点"""
print("=== 测试健康检查端点 ===")
response = httpx.get("http://127.0.0.1:8000/health")
print("健康检查响应:", response.text)
print("状态码:", response.status_code)
print("="*50 + "\n")
if __name__ == "__main__":
test_health_endpoint()
test_sync_stream()
asyncio.run(test_async_stream())
客户端示例展示了如何使用httpx处理流式响应:
test_sync_stream
函数演示了同步方式处理流式响应test_async_stream
函数演示了异步方式处理流式响应- 两种方式都使用了httpx的流式API逐块处理响应内容
Streamlit集成
python
import httpx
import streamlit as st
def stream_llm(messages: list = []):
with httpx.stream("POST", "http://127.0.0.1:8000/stream", json={"thread_id": "test_thread_1", "messages": messages}) as resp:
for chunk in resp.iter_text():
if chunk:
yield chunk
with st.sidebar:
st.button("Clear Chat", on_click=lambda: st.session_state.pop("messages", None), width="stretch")
st.title("MCP Chatbot")
st.caption("🚀 A Streamlit chatbot powered by Qwen")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state["messages"] = []
# Display chat messages from history on app rerun
for msg in st.session_state.messages:
st.chat_message(msg["role"]).markdown(msg["content"])
# React to user input
if prompt := st.chat_input(placeholder="What's up?"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
msg = st.write_stream(stream_llm(st.session_state.messages))
st.session_state.messages.append({"role": "assistant", "content": msg})
集成代码中,我们创建了一个函数stream_llm
来通过httpx连接FastAPI后端,并将流式响应传递给Streamlit前端显示。这样就实现了从前端到后端的完整流式处理链路。
补充
pkg/config.py
python
import json
from pathlib import Path
class Config:
def __init__(self):
p = Path(__file__).parent.parent / "conf" / "config.json"
if not p.exists():
raise FileNotFoundError(f"Config file not found: {p}")
self.data = self.read_json(str(p))
def read_json(self, filepath: str) -> dict:
with open(filepath, "r") as f:
return json.load(f)
@property
def llm_model(self) -> str:
return self.data["llm"]["model"]
@property
def llm_api_key(self):
return self.data["llm"]["api_key"]
@property
def llm_base_url(self) -> str:
return self.data["llm"]["base_url"]
@property
def server_host(self) -> str:
return self.data["server"]["host"]
@property
def server_port(self) -> int:
return self.data["server"]["port"]
cfg = Config()
pkg/log.py
python
import logging
import sys
def set_formatter():
"""设置formatter"""
fmt = "%(asctime)s | %(name)s | %(levelname)s | %(filename)s:%(lineno)d | %(funcName)s | %(message)s"
datefmt = "%Y-%m-%d %H:%M:%S"
return logging.Formatter(fmt, datefmt=datefmt)
def set_stream_handler():
return logging.StreamHandler(sys.stdout)
def set_file_handler():
return logging.FileHandler("app.log", mode="a", encoding="utf-8")
def get_logger(name: str = "mylogger", level=logging.DEBUG):
logger = logging.getLogger(name)
formatter = set_formatter()
# handler = set_stream_handler()
handler = set_file_handler()
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(level)
return logger
logger = get_logger()