【第五章:计算机视觉-项目实战之图像分割实战】1.图像分割理论-(1)图像分割基础知识:定义、任务描述、应用场景、标注格式

第五章:计算机视觉(Computer Vision)- 项目实战之目标检测实战

第一部分:图像分割理论

第一节:图像分割基础知识:定义、任务描述、应用场景、标注格式

1. 图像分割的定义

图像分割(Image Segmentation)是计算机视觉中的核心任务之一,其目标是将输入图像划分为若干具有语义或实例意义的区域,使得同一区域的像素具有相似特征,而不同区域之间差异显著。

  • 低层次分割:基于颜色、纹理、边缘等视觉特征进行划分。

  • 高层次分割:结合深度学习和语义信息,将图像划分为具有特定类别含义的部分。

简而言之,图像分割就是回答 "图像中的每个像素属于哪个类别?"


2. 图像分割的任务描述

根据目标和粒度的不同,图像分割主要分为以下几类任务:

  1. 语义分割(Semantic Segmentation)

    • 将图像中的像素按语义类别进行划分。

    • 例子:把道路、车辆、行人、天空分别标注出来。

    • 局限:同类目标之间无法区分。

  2. 实例分割(Instance Segmentation)

    • 不仅要区分类别,还要区分同一类别下的不同个体。

    • 例子:分割出图像中每一辆车,而不仅仅是"车"区域。

  3. 全景分割(Panoptic Segmentation)

    • 结合语义分割与实例分割。

    • 同时区分 "可数目标"(车、人、动物)与 "不可数背景"(天空、草地)。


3. 图像分割的应用场景

图像分割在人工智能和工业界有广泛应用:

  • 自动驾驶:分割道路、车道线、行人和交通标志。

  • 医学影像:分割肿瘤、器官边界,辅助医生诊断。

  • 遥感影像:分割建筑物、农田、河流等地理要素。

  • 视频监控:精确识别人群分布与运动区域。

  • 工业制造:缺陷检测、自动化分拣。


4. 图像分割的常见标注格式

图像分割的数据标注格式比目标检测更精细,主要包括:

  1. 像素级标注(Mask)

    • 每个像素点都对应一个类别 ID,形成标签图(Label Map)。

    • 常见格式:PNG、TIFF、NumPy 数组。

  2. 多边形标注(Polygon Annotation)

    • 用多边形轮廓来圈定目标区域。

    • 适合目标边界清晰、结构规则的任务。

  3. RLE(Run-Length Encoding,游程编码)

    • 常用于大规模数据集(如 COCO、Cityscapes)。

    • 通过记录连续像素的类别,实现压缩存储。


小结

图像分割是一项 像素级别 的视觉任务,区别于图像分类(图像整体标签)和目标检测(目标级别边框),它要求对图像中的每个像素进行精确分类。常见任务有语义分割、实例分割和全景分割,应用广泛且标注格式多样。

相关推荐
像风一样的男人@17 小时前
python --两个文件夹文件名比对(yolo 图和label标注比对检查)
windows·python·yolo
chao18984419 小时前
多光谱图像融合:IHS、PCA与小波变换的MATLAB实现
图像处理·计算机视觉·matlab
Funny_AI_LAB1 天前
深度解析Andrej Karpathy访谈:关于AI智能体、AGI、强化学习与大模型的十年远见
人工智能·计算机视觉·ai·agi
滨HI01 天前
opencv 计算面积、周长
人工智能·opencv·计算机视觉
格林威1 天前
AOI在风电行业制造领域中的应用
人工智能·数码相机·计算机视觉·视觉检测·制造·机器视觉·aoi
禁默1 天前
第四届图像处理、计算机视觉与机器学习国际学术会议(ICICML 2025)
图像处理·机器学习·计算机视觉
唯道行1 天前
计算机图形学·9 几何学
人工智能·线性代数·计算机视觉·矩阵·几何学·计算机图形学
AndrewHZ1 天前
【图像处理基石】什么是alpha matting?
图像处理·人工智能·计算机视觉·matting·发丝分割·trimap·人像模式
这张生成的图像能检测吗1 天前
(综述)基于深度学习的制造业表面缺陷检测图像合成方法综述
人工智能·计算机视觉·图像生成·工业检测·计算机图像学
AI纪元故事会2 天前
【计算机视觉目标检测算法对比:R-CNN、YOLO与SSD全面解析】
人工智能·算法·目标检测·计算机视觉