ML4T - 第7章第8节 利用LR预测股票价格走势Predicting stock price moves with Logistic Regression

目录

[一、Load Data 加载数据](#一、Load Data 加载数据)

[二、Define cross-validation parameters 定义交叉验证参数](#二、Define cross-validation parameters 定义交叉验证参数)

[三、Run cross-validation 运行交叉验证](#三、Run cross-validation 运行交叉验证)

[四、Evaluate Results 评估结果](#四、Evaluate Results 评估结果)


这篇文章其实和前面的差不多,作者可能是为了加深印象,又举了一个例子。

This paragraph is similar to those before.

一、Load Data 加载数据

python 复制代码
import warnings
warnings.filterwarnings('ignore')

from pathlib import Path
import sys, os
from time import time

import pandas as pd
import numpy as np

from scipy.stats import spearmanr

from sklearn.metrics import roc_auc_score
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

import seaborn as sns
import matplotlib.pyplot as plt

# sys.path.insert(1, os.path.join(sys.path[0], '..'))
# from utils import MultipleTimeSeriesCV

sns.set_style('darkgrid')
idx = pd.IndexSlice

YEAR = 252

# Load Data
with pd.HDFStore('data.h5') as store:
    data = (store['model_data']
            .dropna()
            .drop(['open', 'close', 'low', 'high'], axis=1))
data = data.drop([c for c in data.columns if 'year' in c or 'lag' in c], axis=1)

# Select Investment Universe
data = data[data.dollar_vol_rank<100]

# Create Model Data
y = data.filter(like='target')
X = data.drop(y.columns, axis=1)
X = X.drop(['dollar_vol', 'dollar_vol_rank', 'volume', 'consumer_durables'], axis=1)

二、Define cross-validation parameters 定义交叉验证参数

这里本人为了降低调试难度,没有用到utils.py文件

python 复制代码
# https://github.com/stefan-jansen/machine-learning-for-trading/blob/main/utils.py
class MultipleTimeSeriesCV:
    """Generates tuples of train_idx, test_idx pairs
    Assumes the MultiIndex contains levels 'symbol' and 'date'
    purges overlapping outcomes"""

    def __init__(self,
                 n_splits=3,
                 train_period_length=126,
                 test_period_length=21,
                 lookahead=None,
                 date_idx='date',
                 shuffle=False):
        self.n_splits = n_splits
        self.lookahead = lookahead
        self.test_length = test_period_length
        self.train_length = train_period_length
        self.shuffle = shuffle
        self.date_idx = date_idx

    def split(self, X, y=None, groups=None):
        unique_dates = X.index.get_level_values(self.date_idx).unique()
        days = sorted(unique_dates, reverse=True)
        split_idx = []
        for i in range(self.n_splits):
            test_end_idx = i * self.test_length
            test_start_idx = test_end_idx + self.test_length
            train_end_idx = test_start_idx + self.lookahead - 1
            train_start_idx = train_end_idx + self.train_length + self.lookahead - 1
            split_idx.append([train_start_idx, train_end_idx,
                              test_start_idx, test_end_idx])

        dates = X.reset_index()[[self.date_idx]]
        for train_start, train_end, test_start, test_end in split_idx:

            train_idx = dates[(dates[self.date_idx] > days[train_start])
                              & (dates[self.date_idx] <= days[train_end])].index
            test_idx = dates[(dates[self.date_idx] > days[test_start])
                             & (dates[self.date_idx] <= days[test_end])].index
            if self.shuffle:
                np.random.shuffle(list(train_idx))
            yield train_idx.to_numpy(), test_idx.to_numpy()

    def get_n_splits(self, X, y, groups=None):
        return self.n_splits


train_period_length = 63
test_period_length = 10
lookahead =1
n_splits = int(3 * YEAR/test_period_length)

cv = MultipleTimeSeriesCV(n_splits=n_splits,
                          test_period_length=test_period_length,
                          lookahead=lookahead,
                          train_period_length=train_period_length)

target = f'target_{lookahead}d'
y.loc[:, 'label'] = (y[target] > 0).astype(int)
y.label.value_counts()

Cs = np.logspace(-5, 5, 11)
cols = ['C', 'date', 'auc', 'ic', 'pval']

从这里就可以看出:

复制代码
y.loc[:, 'label'] = (y[target] > 0).astype(int)
y.label.value_counts()
复制代码
1    56486
0    53189
Name: label, dtype: int64

这是一个二分类任务。

三、Run cross-validation 运行交叉验证

python 复制代码
# %%time
log_coeffs, log_scores, log_predictions = {}, [], []
for C in Cs:
    print(C)
    model = LogisticRegression(C=C,
                               fit_intercept=True,
                               random_state=42,
                               n_jobs=-1)

    pipe = Pipeline([
        ('scaler', StandardScaler()),
        ('model', model)])
    ics = aucs = 0
    start = time()
    coeffs = []
    for i, (train_idx, test_idx) in enumerate(cv.split(X), 1):
        X_train, y_train, = X.iloc[train_idx], y.label.iloc[train_idx]
        pipe.fit(X=X_train, y=y_train)
        X_test, y_test = X.iloc[test_idx], y.label.iloc[test_idx]
        actuals = y[target].iloc[test_idx]
        if len(y_test) < 10 or len(np.unique(y_test)) < 2:
            continue
        y_score = pipe.predict_proba(X_test)[:, 1]
       
        auc = roc_auc_score(y_score=y_score, y_true=y_test)
        actuals = y[target].iloc[test_idx]
        ic, pval = spearmanr(y_score, actuals)

        log_predictions.append(y_test.to_frame('labels').assign(
            predicted=y_score, C=C, actuals=actuals))
        date = y_test.index.get_level_values('date').min()
        log_scores.append([C, date, auc, ic * 100, pval])
        coeffs.append(pipe.named_steps['model'].coef_)
        ics += ic
        aucs += auc
        if i % 10 == 0:
            print(f'\t{time()-start:5.1f} | {i:03} | {ics/i:>7.2%} | {aucs/i:>7.2%}')

    log_coeffs[C] = np.mean(coeffs, axis=0).squeeze()

输出:

python 复制代码
1e-05
	  7.3 | 010 |  -0.21% |  50.30%
	  9.3 | 020 |   2.42% |  51.99%
	 10.9 | 030 |   3.10% |  52.11%
	 13.2 | 040 |   3.49% |  52.07%
	 15.1 | 050 |   4.01% |  52.47%
	 16.5 | 060 |   3.91% |  52.25%
	 17.7 | 070 |   4.63% |  52.54%
0.0001
	  1.4 | 010 |  -0.09% |  50.42%
	  2.6 | 020 |   2.57% |  52.09%
	  4.0 | 030 |   3.32% |  52.30%
	  5.3 | 040 |   3.47% |  52.14%
	  6.7 | 050 |   3.98% |  52.52%
	  8.0 | 060 |   3.92% |  52.29%
	  9.4 | 070 |   4.70% |  52.60%
0.001
	  1.5 | 010 |   0.30% |  50.71%
	  2.8 | 020 |   2.73% |  52.15%
	  4.1 | 030 |   3.58% |  52.48%
	  5.5 | 040 |   3.21% |  52.09%
	  6.9 | 050 |   3.84% |  52.52%
	  8.2 | 060 |   3.98% |  52.33%
	  9.6 | 070 |   4.78% |  52.66%
0.01
	  1.5 | 010 |   0.51% |  50.82%
	  2.6 | 020 |   2.56% |  51.96%
	  3.9 | 030 |   3.55% |  52.35%
	  5.2 | 040 |   3.02% |  51.90%
	  6.4 | 050 |   3.88% |  52.47%
	  7.6 | 060 |   4.05% |  52.28%
	  8.8 | 070 |   4.76% |  52.58%
0.1
	  1.3 | 010 |   0.44% |  50.74%
	  2.8 | 020 |   2.28% |  51.74%
	  4.7 | 030 |   3.32% |  52.17%
	  6.1 | 040 |   2.77% |  51.71%
	  7.8 | 050 |   3.65% |  52.30%
	  9.2 | 060 |   3.82% |  52.12%
	 10.8 | 070 |   4.46% |  52.40%
1.0
	  1.9 | 010 |   0.42% |  50.72%
	  2.9 | 020 |   2.22% |  51.69%
	  4.3 | 030 |   3.26% |  52.12%
	  5.9 | 040 |   2.70% |  51.66%
	  7.3 | 050 |   3.58% |  52.26%
	  8.9 | 060 |   3.74% |  52.07%
	 10.1 | 070 |   4.37% |  52.35%
10.0
	  1.6 | 010 |   0.42% |  50.72%
	  3.1 | 020 |   2.21% |  51.68%
	  5.0 | 030 |   3.25% |  52.12%
	  6.9 | 040 |   2.69% |  51.66%
	  9.0 | 050 |   3.58% |  52.25%
	 10.3 | 060 |   3.73% |  52.06%
	 12.1 | 070 |   4.36% |  52.34%
100.0
	  1.5 | 010 |   0.42% |  50.72%
	  3.4 | 020 |   2.21% |  51.68%
	  4.9 | 030 |   3.25% |  52.12%
	  6.5 | 040 |   2.69% |  51.66%
	  8.0 | 050 |   3.57% |  52.25%
	  9.4 | 060 |   3.73% |  52.06%
	 11.0 | 070 |   4.36% |  52.34%
1000.0
	  1.9 | 010 |   0.42% |  50.72%
	  4.1 | 020 |   2.21% |  51.68%
	  5.8 | 030 |   3.25% |  52.12%
	  7.3 | 040 |   2.69% |  51.66%
	  8.8 | 050 |   3.57% |  52.25%
	 10.3 | 060 |   3.73% |  52.06%
	 12.0 | 070 |   4.36% |  52.34%
10000.0
	  1.8 | 010 |   0.42% |  50.72%
	  3.4 | 020 |   2.21% |  51.68%
	  4.8 | 030 |   3.25% |  52.12%
	  6.0 | 040 |   2.69% |  51.66%
	  7.6 | 050 |   3.57% |  52.25%
	  8.8 | 060 |   3.73% |  52.06%
	 10.2 | 070 |   4.36% |  52.34%
100000.0
	  1.8 | 010 |   0.42% |  50.72%
	  3.4 | 020 |   2.21% |  51.68%
	  4.9 | 030 |   3.25% |  52.12%
	  6.4 | 040 |   2.69% |  51.66%
	  7.8 | 050 |   3.57% |  52.25%
	  9.3 | 060 |   3.73% |  52.06%
	 10.7 | 070 |   4.36% |  52.34%

四、Evaluate Results 评估结果

python 复制代码
log_scores = pd.DataFrame(log_scores, columns=cols)
log_scores.to_hdf('data.h5', 'logistic/scores')

log_coeffs = pd.DataFrame(log_coeffs, index=X.columns).T
log_coeffs.to_hdf('data.h5', 'logistic/coeffs')

log_predictions = pd.concat(log_predictions)
log_predictions.to_hdf('data.h5', 'logistic/predictions')

log_scores = pd.read_hdf('data.h5', 'logistic/scores')

log_scores.info()

log_scores.groupby('C').auc.describe()

| | count | mean | std | min | 25% | 50% | 75% | max |
| C | | | | | | | | |
| 0.00001 | 75.0 | 0.524834 | 0.033162 | 0.462730 | 0.500238 | 0.520174 | 0.543183 | 0.608531 |
| 0.00010 | 75.0 | 0.525391 | 0.033182 | 0.465664 | 0.500457 | 0.520052 | 0.539332 | 0.617832 |
| 0.00100 | 75.0 | 0.525726 | 0.034815 | 0.442510 | 0.499963 | 0.521454 | 0.546595 | 0.637523 |
| 0.01000 | 75.0 | 0.525146 | 0.036003 | 0.447376 | 0.500513 | 0.519809 | 0.547387 | 0.633047 |
| 0.10000 | 75.0 | 0.523507 | 0.036001 | 0.439579 | 0.501279 | 0.517053 | 0.548712 | 0.617858 |
| 1.00000 | 75.0 | 0.523068 | 0.035935 | 0.438185 | 0.500740 | 0.516178 | 0.548256 | 0.614613 |
| 10.00000 | 75.0 | 0.523020 | 0.035928 | 0.438122 | 0.500564 | 0.516100 | 0.548231 | 0.614639 |
| 100.00000 | 75.0 | 0.523012 | 0.035928 | 0.438088 | 0.500543 | 0.516050 | 0.548237 | 0.614629 |
| 1000.00000 | 75.0 | 0.523011 | 0.035929 | 0.438074 | 0.500541 | 0.516038 | 0.548239 | 0.614629 |
| 10000.00000 | 75.0 | 0.523010 | 0.035929 | 0.438079 | 0.500541 | 0.516038 | 0.548239 | 0.614629 |

100000.00000 75.0 0.523010 0.035929 0.438079 0.500541 0.516038 0.548239 0.614629

五、Plot Validation Scores 绘制验证分数

python 复制代码
def plot_ic_distribution(df, ax=None):
    if ax is not None:
        sns.distplot(df.ic, ax=ax)    
    else:
        ax = sns.distplot(df.ic)
    mean, median = df.ic.mean(), df.ic.median()
    ax.axvline(0, lw=1, ls='--', c='k')
    ax.text(x=.05, y=.9, s=f'Mean: {mean:8.2f}\nMedian: {median:5.2f}',
            horizontalalignment='left',
            verticalalignment='center',
            transform=ax.transAxes)
    ax.set_xlabel('Information Coefficient')
    sns.despine()
    plt.tight_layout()

fig, axes= plt.subplots(ncols=2, figsize=(15, 5))

sns.lineplot(x='C', y='auc', data=log_scores, estimator=np.mean, label='Mean', ax=axes[0])
by_alpha = log_scores.groupby('C').auc.agg(['mean', 'median'])
best_auc = by_alpha['mean'].idxmax()
by_alpha['median'].plot(logx=True, ax=axes[0], label='Median', xlim=(10e-6, 10e5))
axes[0].axvline(best_auc, ls='--', c='k', lw=1, label='Max. Mean')
axes[0].axvline(by_alpha['median'].idxmax(), ls='-.', c='k', lw=1, label='Max. Median')
axes[0].legend()
axes[0].set_ylabel('AUC')
axes[0].set_xscale('log')
axes[0].set_title('Area Under the Curve')

plot_ic_distribution(log_scores[log_scores.C==best_auc], ax=axes[1])
axes[1].set_title('Information Coefficient')

fig.suptitle('Logistic Regression', fontsize=14)
sns.despine()
fig.tight_layout()
fig.subplots_adjust(top=.9);
相关推荐
侯小啾33 分钟前
【03】C语言 强制类型转换 与 进制转换
c语言·数据结构·算法
Xの哲學1 小时前
Linux NAPI 架构详解
linux·网络·算法·架构·边缘计算
koo3643 小时前
李宏毅机器学习笔记30
人工智能·笔记·机器学习
长桥夜波4 小时前
机器学习日报02
人工智能·机器学习·neo4j
tainshuai4 小时前
YOLOv4 实战指南:单 GPU 训练的目标检测利器
yolo·目标检测·机器学习
京东零售技术4 小时前
扛起技术大梁的零售校招生们 | 1024技术人特别篇
算法
爱coding的橙子5 小时前
每日算法刷题Day78:10.23:leetcode 一般树7道题,用时1h30min
算法·leetcode·深度优先
Swift社区5 小时前
LeetCode 403 - 青蛙过河
算法·leetcode·职场和发展
地平线开发者5 小时前
三种 Badcase 精度验证方案详解与 hbm_infer 部署实录
算法·自动驾驶
wperseverance5 小时前
Pytorch常用层总结
深度学习·机器学习