ML4T - 第7章第8节 利用LR预测股票价格走势Predicting stock price moves with Logistic Regression

目录

[一、Load Data 加载数据](#一、Load Data 加载数据)

[二、Define cross-validation parameters 定义交叉验证参数](#二、Define cross-validation parameters 定义交叉验证参数)

[三、Run cross-validation 运行交叉验证](#三、Run cross-validation 运行交叉验证)

[四、Evaluate Results 评估结果](#四、Evaluate Results 评估结果)


这篇文章其实和前面的差不多,作者可能是为了加深印象,又举了一个例子。

This paragraph is similar to those before.

一、Load Data 加载数据

python 复制代码
import warnings
warnings.filterwarnings('ignore')

from pathlib import Path
import sys, os
from time import time

import pandas as pd
import numpy as np

from scipy.stats import spearmanr

from sklearn.metrics import roc_auc_score
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

import seaborn as sns
import matplotlib.pyplot as plt

# sys.path.insert(1, os.path.join(sys.path[0], '..'))
# from utils import MultipleTimeSeriesCV

sns.set_style('darkgrid')
idx = pd.IndexSlice

YEAR = 252

# Load Data
with pd.HDFStore('data.h5') as store:
    data = (store['model_data']
            .dropna()
            .drop(['open', 'close', 'low', 'high'], axis=1))
data = data.drop([c for c in data.columns if 'year' in c or 'lag' in c], axis=1)

# Select Investment Universe
data = data[data.dollar_vol_rank<100]

# Create Model Data
y = data.filter(like='target')
X = data.drop(y.columns, axis=1)
X = X.drop(['dollar_vol', 'dollar_vol_rank', 'volume', 'consumer_durables'], axis=1)

二、Define cross-validation parameters 定义交叉验证参数

这里本人为了降低调试难度,没有用到utils.py文件

python 复制代码
# https://github.com/stefan-jansen/machine-learning-for-trading/blob/main/utils.py
class MultipleTimeSeriesCV:
    """Generates tuples of train_idx, test_idx pairs
    Assumes the MultiIndex contains levels 'symbol' and 'date'
    purges overlapping outcomes"""

    def __init__(self,
                 n_splits=3,
                 train_period_length=126,
                 test_period_length=21,
                 lookahead=None,
                 date_idx='date',
                 shuffle=False):
        self.n_splits = n_splits
        self.lookahead = lookahead
        self.test_length = test_period_length
        self.train_length = train_period_length
        self.shuffle = shuffle
        self.date_idx = date_idx

    def split(self, X, y=None, groups=None):
        unique_dates = X.index.get_level_values(self.date_idx).unique()
        days = sorted(unique_dates, reverse=True)
        split_idx = []
        for i in range(self.n_splits):
            test_end_idx = i * self.test_length
            test_start_idx = test_end_idx + self.test_length
            train_end_idx = test_start_idx + self.lookahead - 1
            train_start_idx = train_end_idx + self.train_length + self.lookahead - 1
            split_idx.append([train_start_idx, train_end_idx,
                              test_start_idx, test_end_idx])

        dates = X.reset_index()[[self.date_idx]]
        for train_start, train_end, test_start, test_end in split_idx:

            train_idx = dates[(dates[self.date_idx] > days[train_start])
                              & (dates[self.date_idx] <= days[train_end])].index
            test_idx = dates[(dates[self.date_idx] > days[test_start])
                             & (dates[self.date_idx] <= days[test_end])].index
            if self.shuffle:
                np.random.shuffle(list(train_idx))
            yield train_idx.to_numpy(), test_idx.to_numpy()

    def get_n_splits(self, X, y, groups=None):
        return self.n_splits


train_period_length = 63
test_period_length = 10
lookahead =1
n_splits = int(3 * YEAR/test_period_length)

cv = MultipleTimeSeriesCV(n_splits=n_splits,
                          test_period_length=test_period_length,
                          lookahead=lookahead,
                          train_period_length=train_period_length)

target = f'target_{lookahead}d'
y.loc[:, 'label'] = (y[target] > 0).astype(int)
y.label.value_counts()

Cs = np.logspace(-5, 5, 11)
cols = ['C', 'date', 'auc', 'ic', 'pval']

从这里就可以看出:

复制代码
y.loc[:, 'label'] = (y[target] > 0).astype(int)
y.label.value_counts()
复制代码
1    56486
0    53189
Name: label, dtype: int64

这是一个二分类任务。

三、Run cross-validation 运行交叉验证

python 复制代码
# %%time
log_coeffs, log_scores, log_predictions = {}, [], []
for C in Cs:
    print(C)
    model = LogisticRegression(C=C,
                               fit_intercept=True,
                               random_state=42,
                               n_jobs=-1)

    pipe = Pipeline([
        ('scaler', StandardScaler()),
        ('model', model)])
    ics = aucs = 0
    start = time()
    coeffs = []
    for i, (train_idx, test_idx) in enumerate(cv.split(X), 1):
        X_train, y_train, = X.iloc[train_idx], y.label.iloc[train_idx]
        pipe.fit(X=X_train, y=y_train)
        X_test, y_test = X.iloc[test_idx], y.label.iloc[test_idx]
        actuals = y[target].iloc[test_idx]
        if len(y_test) < 10 or len(np.unique(y_test)) < 2:
            continue
        y_score = pipe.predict_proba(X_test)[:, 1]
       
        auc = roc_auc_score(y_score=y_score, y_true=y_test)
        actuals = y[target].iloc[test_idx]
        ic, pval = spearmanr(y_score, actuals)

        log_predictions.append(y_test.to_frame('labels').assign(
            predicted=y_score, C=C, actuals=actuals))
        date = y_test.index.get_level_values('date').min()
        log_scores.append([C, date, auc, ic * 100, pval])
        coeffs.append(pipe.named_steps['model'].coef_)
        ics += ic
        aucs += auc
        if i % 10 == 0:
            print(f'\t{time()-start:5.1f} | {i:03} | {ics/i:>7.2%} | {aucs/i:>7.2%}')

    log_coeffs[C] = np.mean(coeffs, axis=0).squeeze()

输出:

python 复制代码
1e-05
	  7.3 | 010 |  -0.21% |  50.30%
	  9.3 | 020 |   2.42% |  51.99%
	 10.9 | 030 |   3.10% |  52.11%
	 13.2 | 040 |   3.49% |  52.07%
	 15.1 | 050 |   4.01% |  52.47%
	 16.5 | 060 |   3.91% |  52.25%
	 17.7 | 070 |   4.63% |  52.54%
0.0001
	  1.4 | 010 |  -0.09% |  50.42%
	  2.6 | 020 |   2.57% |  52.09%
	  4.0 | 030 |   3.32% |  52.30%
	  5.3 | 040 |   3.47% |  52.14%
	  6.7 | 050 |   3.98% |  52.52%
	  8.0 | 060 |   3.92% |  52.29%
	  9.4 | 070 |   4.70% |  52.60%
0.001
	  1.5 | 010 |   0.30% |  50.71%
	  2.8 | 020 |   2.73% |  52.15%
	  4.1 | 030 |   3.58% |  52.48%
	  5.5 | 040 |   3.21% |  52.09%
	  6.9 | 050 |   3.84% |  52.52%
	  8.2 | 060 |   3.98% |  52.33%
	  9.6 | 070 |   4.78% |  52.66%
0.01
	  1.5 | 010 |   0.51% |  50.82%
	  2.6 | 020 |   2.56% |  51.96%
	  3.9 | 030 |   3.55% |  52.35%
	  5.2 | 040 |   3.02% |  51.90%
	  6.4 | 050 |   3.88% |  52.47%
	  7.6 | 060 |   4.05% |  52.28%
	  8.8 | 070 |   4.76% |  52.58%
0.1
	  1.3 | 010 |   0.44% |  50.74%
	  2.8 | 020 |   2.28% |  51.74%
	  4.7 | 030 |   3.32% |  52.17%
	  6.1 | 040 |   2.77% |  51.71%
	  7.8 | 050 |   3.65% |  52.30%
	  9.2 | 060 |   3.82% |  52.12%
	 10.8 | 070 |   4.46% |  52.40%
1.0
	  1.9 | 010 |   0.42% |  50.72%
	  2.9 | 020 |   2.22% |  51.69%
	  4.3 | 030 |   3.26% |  52.12%
	  5.9 | 040 |   2.70% |  51.66%
	  7.3 | 050 |   3.58% |  52.26%
	  8.9 | 060 |   3.74% |  52.07%
	 10.1 | 070 |   4.37% |  52.35%
10.0
	  1.6 | 010 |   0.42% |  50.72%
	  3.1 | 020 |   2.21% |  51.68%
	  5.0 | 030 |   3.25% |  52.12%
	  6.9 | 040 |   2.69% |  51.66%
	  9.0 | 050 |   3.58% |  52.25%
	 10.3 | 060 |   3.73% |  52.06%
	 12.1 | 070 |   4.36% |  52.34%
100.0
	  1.5 | 010 |   0.42% |  50.72%
	  3.4 | 020 |   2.21% |  51.68%
	  4.9 | 030 |   3.25% |  52.12%
	  6.5 | 040 |   2.69% |  51.66%
	  8.0 | 050 |   3.57% |  52.25%
	  9.4 | 060 |   3.73% |  52.06%
	 11.0 | 070 |   4.36% |  52.34%
1000.0
	  1.9 | 010 |   0.42% |  50.72%
	  4.1 | 020 |   2.21% |  51.68%
	  5.8 | 030 |   3.25% |  52.12%
	  7.3 | 040 |   2.69% |  51.66%
	  8.8 | 050 |   3.57% |  52.25%
	 10.3 | 060 |   3.73% |  52.06%
	 12.0 | 070 |   4.36% |  52.34%
10000.0
	  1.8 | 010 |   0.42% |  50.72%
	  3.4 | 020 |   2.21% |  51.68%
	  4.8 | 030 |   3.25% |  52.12%
	  6.0 | 040 |   2.69% |  51.66%
	  7.6 | 050 |   3.57% |  52.25%
	  8.8 | 060 |   3.73% |  52.06%
	 10.2 | 070 |   4.36% |  52.34%
100000.0
	  1.8 | 010 |   0.42% |  50.72%
	  3.4 | 020 |   2.21% |  51.68%
	  4.9 | 030 |   3.25% |  52.12%
	  6.4 | 040 |   2.69% |  51.66%
	  7.8 | 050 |   3.57% |  52.25%
	  9.3 | 060 |   3.73% |  52.06%
	 10.7 | 070 |   4.36% |  52.34%

四、Evaluate Results 评估结果

python 复制代码
log_scores = pd.DataFrame(log_scores, columns=cols)
log_scores.to_hdf('data.h5', 'logistic/scores')

log_coeffs = pd.DataFrame(log_coeffs, index=X.columns).T
log_coeffs.to_hdf('data.h5', 'logistic/coeffs')

log_predictions = pd.concat(log_predictions)
log_predictions.to_hdf('data.h5', 'logistic/predictions')

log_scores = pd.read_hdf('data.h5', 'logistic/scores')

log_scores.info()

log_scores.groupby('C').auc.describe()

| | count | mean | std | min | 25% | 50% | 75% | max |
| C | | | | | | | | |
| 0.00001 | 75.0 | 0.524834 | 0.033162 | 0.462730 | 0.500238 | 0.520174 | 0.543183 | 0.608531 |
| 0.00010 | 75.0 | 0.525391 | 0.033182 | 0.465664 | 0.500457 | 0.520052 | 0.539332 | 0.617832 |
| 0.00100 | 75.0 | 0.525726 | 0.034815 | 0.442510 | 0.499963 | 0.521454 | 0.546595 | 0.637523 |
| 0.01000 | 75.0 | 0.525146 | 0.036003 | 0.447376 | 0.500513 | 0.519809 | 0.547387 | 0.633047 |
| 0.10000 | 75.0 | 0.523507 | 0.036001 | 0.439579 | 0.501279 | 0.517053 | 0.548712 | 0.617858 |
| 1.00000 | 75.0 | 0.523068 | 0.035935 | 0.438185 | 0.500740 | 0.516178 | 0.548256 | 0.614613 |
| 10.00000 | 75.0 | 0.523020 | 0.035928 | 0.438122 | 0.500564 | 0.516100 | 0.548231 | 0.614639 |
| 100.00000 | 75.0 | 0.523012 | 0.035928 | 0.438088 | 0.500543 | 0.516050 | 0.548237 | 0.614629 |
| 1000.00000 | 75.0 | 0.523011 | 0.035929 | 0.438074 | 0.500541 | 0.516038 | 0.548239 | 0.614629 |
| 10000.00000 | 75.0 | 0.523010 | 0.035929 | 0.438079 | 0.500541 | 0.516038 | 0.548239 | 0.614629 |

100000.00000 75.0 0.523010 0.035929 0.438079 0.500541 0.516038 0.548239 0.614629

五、Plot Validation Scores 绘制验证分数

python 复制代码
def plot_ic_distribution(df, ax=None):
    if ax is not None:
        sns.distplot(df.ic, ax=ax)    
    else:
        ax = sns.distplot(df.ic)
    mean, median = df.ic.mean(), df.ic.median()
    ax.axvline(0, lw=1, ls='--', c='k')
    ax.text(x=.05, y=.9, s=f'Mean: {mean:8.2f}\nMedian: {median:5.2f}',
            horizontalalignment='left',
            verticalalignment='center',
            transform=ax.transAxes)
    ax.set_xlabel('Information Coefficient')
    sns.despine()
    plt.tight_layout()

fig, axes= plt.subplots(ncols=2, figsize=(15, 5))

sns.lineplot(x='C', y='auc', data=log_scores, estimator=np.mean, label='Mean', ax=axes[0])
by_alpha = log_scores.groupby('C').auc.agg(['mean', 'median'])
best_auc = by_alpha['mean'].idxmax()
by_alpha['median'].plot(logx=True, ax=axes[0], label='Median', xlim=(10e-6, 10e5))
axes[0].axvline(best_auc, ls='--', c='k', lw=1, label='Max. Mean')
axes[0].axvline(by_alpha['median'].idxmax(), ls='-.', c='k', lw=1, label='Max. Median')
axes[0].legend()
axes[0].set_ylabel('AUC')
axes[0].set_xscale('log')
axes[0].set_title('Area Under the Curve')

plot_ic_distribution(log_scores[log_scores.C==best_auc], ax=axes[1])
axes[1].set_title('Information Coefficient')

fig.suptitle('Logistic Regression', fontsize=14)
sns.despine()
fig.tight_layout()
fig.subplots_adjust(top=.9);
相关推荐
超级大只老咪13 分钟前
快速进制转换
笔记·算法
m0_7066532335 分钟前
C++编译期数组操作
开发语言·c++·算法
故事和你911 小时前
sdut-Java面向对象-06 继承和多态、抽象类和接口(函数题:10-18题)
java·开发语言·算法·面向对象·基础语法·继承和多态·抽象类和接口
qq_423233901 小时前
C++与Python混合编程实战
开发语言·c++·算法
TracyCoder1231 小时前
LeetCode Hot100(19/100)——206. 反转链表
算法·leetcode
m0_715575341 小时前
分布式任务调度系统
开发语言·c++·算法
陈天伟教授1 小时前
人工智能应用-机器听觉:15. 声纹识别的应用
人工智能·神经网络·机器学习·语音识别
naruto_lnq2 小时前
泛型编程与STL设计思想
开发语言·c++·算法
板面华仔2 小时前
机器学习入门(三)——决策树(Decision Tree)
人工智能·决策树·机器学习