ML4T - 第7章第8节 利用LR预测股票价格走势Predicting stock price moves with Logistic Regression

目录

[一、Load Data 加载数据](#一、Load Data 加载数据)

[二、Define cross-validation parameters 定义交叉验证参数](#二、Define cross-validation parameters 定义交叉验证参数)

[三、Run cross-validation 运行交叉验证](#三、Run cross-validation 运行交叉验证)

[四、Evaluate Results 评估结果](#四、Evaluate Results 评估结果)


这篇文章其实和前面的差不多,作者可能是为了加深印象,又举了一个例子。

This paragraph is similar to those before.

一、Load Data 加载数据

python 复制代码
import warnings
warnings.filterwarnings('ignore')

from pathlib import Path
import sys, os
from time import time

import pandas as pd
import numpy as np

from scipy.stats import spearmanr

from sklearn.metrics import roc_auc_score
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

import seaborn as sns
import matplotlib.pyplot as plt

# sys.path.insert(1, os.path.join(sys.path[0], '..'))
# from utils import MultipleTimeSeriesCV

sns.set_style('darkgrid')
idx = pd.IndexSlice

YEAR = 252

# Load Data
with pd.HDFStore('data.h5') as store:
    data = (store['model_data']
            .dropna()
            .drop(['open', 'close', 'low', 'high'], axis=1))
data = data.drop([c for c in data.columns if 'year' in c or 'lag' in c], axis=1)

# Select Investment Universe
data = data[data.dollar_vol_rank<100]

# Create Model Data
y = data.filter(like='target')
X = data.drop(y.columns, axis=1)
X = X.drop(['dollar_vol', 'dollar_vol_rank', 'volume', 'consumer_durables'], axis=1)

二、Define cross-validation parameters 定义交叉验证参数

这里本人为了降低调试难度,没有用到utils.py文件

python 复制代码
# https://github.com/stefan-jansen/machine-learning-for-trading/blob/main/utils.py
class MultipleTimeSeriesCV:
    """Generates tuples of train_idx, test_idx pairs
    Assumes the MultiIndex contains levels 'symbol' and 'date'
    purges overlapping outcomes"""

    def __init__(self,
                 n_splits=3,
                 train_period_length=126,
                 test_period_length=21,
                 lookahead=None,
                 date_idx='date',
                 shuffle=False):
        self.n_splits = n_splits
        self.lookahead = lookahead
        self.test_length = test_period_length
        self.train_length = train_period_length
        self.shuffle = shuffle
        self.date_idx = date_idx

    def split(self, X, y=None, groups=None):
        unique_dates = X.index.get_level_values(self.date_idx).unique()
        days = sorted(unique_dates, reverse=True)
        split_idx = []
        for i in range(self.n_splits):
            test_end_idx = i * self.test_length
            test_start_idx = test_end_idx + self.test_length
            train_end_idx = test_start_idx + self.lookahead - 1
            train_start_idx = train_end_idx + self.train_length + self.lookahead - 1
            split_idx.append([train_start_idx, train_end_idx,
                              test_start_idx, test_end_idx])

        dates = X.reset_index()[[self.date_idx]]
        for train_start, train_end, test_start, test_end in split_idx:

            train_idx = dates[(dates[self.date_idx] > days[train_start])
                              & (dates[self.date_idx] <= days[train_end])].index
            test_idx = dates[(dates[self.date_idx] > days[test_start])
                             & (dates[self.date_idx] <= days[test_end])].index
            if self.shuffle:
                np.random.shuffle(list(train_idx))
            yield train_idx.to_numpy(), test_idx.to_numpy()

    def get_n_splits(self, X, y, groups=None):
        return self.n_splits


train_period_length = 63
test_period_length = 10
lookahead =1
n_splits = int(3 * YEAR/test_period_length)

cv = MultipleTimeSeriesCV(n_splits=n_splits,
                          test_period_length=test_period_length,
                          lookahead=lookahead,
                          train_period_length=train_period_length)

target = f'target_{lookahead}d'
y.loc[:, 'label'] = (y[target] > 0).astype(int)
y.label.value_counts()

Cs = np.logspace(-5, 5, 11)
cols = ['C', 'date', 'auc', 'ic', 'pval']

从这里就可以看出:

复制代码
y.loc[:, 'label'] = (y[target] > 0).astype(int)
y.label.value_counts()
复制代码
1    56486
0    53189
Name: label, dtype: int64

这是一个二分类任务。

三、Run cross-validation 运行交叉验证

python 复制代码
# %%time
log_coeffs, log_scores, log_predictions = {}, [], []
for C in Cs:
    print(C)
    model = LogisticRegression(C=C,
                               fit_intercept=True,
                               random_state=42,
                               n_jobs=-1)

    pipe = Pipeline([
        ('scaler', StandardScaler()),
        ('model', model)])
    ics = aucs = 0
    start = time()
    coeffs = []
    for i, (train_idx, test_idx) in enumerate(cv.split(X), 1):
        X_train, y_train, = X.iloc[train_idx], y.label.iloc[train_idx]
        pipe.fit(X=X_train, y=y_train)
        X_test, y_test = X.iloc[test_idx], y.label.iloc[test_idx]
        actuals = y[target].iloc[test_idx]
        if len(y_test) < 10 or len(np.unique(y_test)) < 2:
            continue
        y_score = pipe.predict_proba(X_test)[:, 1]
       
        auc = roc_auc_score(y_score=y_score, y_true=y_test)
        actuals = y[target].iloc[test_idx]
        ic, pval = spearmanr(y_score, actuals)

        log_predictions.append(y_test.to_frame('labels').assign(
            predicted=y_score, C=C, actuals=actuals))
        date = y_test.index.get_level_values('date').min()
        log_scores.append([C, date, auc, ic * 100, pval])
        coeffs.append(pipe.named_steps['model'].coef_)
        ics += ic
        aucs += auc
        if i % 10 == 0:
            print(f'\t{time()-start:5.1f} | {i:03} | {ics/i:>7.2%} | {aucs/i:>7.2%}')

    log_coeffs[C] = np.mean(coeffs, axis=0).squeeze()

输出:

python 复制代码
1e-05
	  7.3 | 010 |  -0.21% |  50.30%
	  9.3 | 020 |   2.42% |  51.99%
	 10.9 | 030 |   3.10% |  52.11%
	 13.2 | 040 |   3.49% |  52.07%
	 15.1 | 050 |   4.01% |  52.47%
	 16.5 | 060 |   3.91% |  52.25%
	 17.7 | 070 |   4.63% |  52.54%
0.0001
	  1.4 | 010 |  -0.09% |  50.42%
	  2.6 | 020 |   2.57% |  52.09%
	  4.0 | 030 |   3.32% |  52.30%
	  5.3 | 040 |   3.47% |  52.14%
	  6.7 | 050 |   3.98% |  52.52%
	  8.0 | 060 |   3.92% |  52.29%
	  9.4 | 070 |   4.70% |  52.60%
0.001
	  1.5 | 010 |   0.30% |  50.71%
	  2.8 | 020 |   2.73% |  52.15%
	  4.1 | 030 |   3.58% |  52.48%
	  5.5 | 040 |   3.21% |  52.09%
	  6.9 | 050 |   3.84% |  52.52%
	  8.2 | 060 |   3.98% |  52.33%
	  9.6 | 070 |   4.78% |  52.66%
0.01
	  1.5 | 010 |   0.51% |  50.82%
	  2.6 | 020 |   2.56% |  51.96%
	  3.9 | 030 |   3.55% |  52.35%
	  5.2 | 040 |   3.02% |  51.90%
	  6.4 | 050 |   3.88% |  52.47%
	  7.6 | 060 |   4.05% |  52.28%
	  8.8 | 070 |   4.76% |  52.58%
0.1
	  1.3 | 010 |   0.44% |  50.74%
	  2.8 | 020 |   2.28% |  51.74%
	  4.7 | 030 |   3.32% |  52.17%
	  6.1 | 040 |   2.77% |  51.71%
	  7.8 | 050 |   3.65% |  52.30%
	  9.2 | 060 |   3.82% |  52.12%
	 10.8 | 070 |   4.46% |  52.40%
1.0
	  1.9 | 010 |   0.42% |  50.72%
	  2.9 | 020 |   2.22% |  51.69%
	  4.3 | 030 |   3.26% |  52.12%
	  5.9 | 040 |   2.70% |  51.66%
	  7.3 | 050 |   3.58% |  52.26%
	  8.9 | 060 |   3.74% |  52.07%
	 10.1 | 070 |   4.37% |  52.35%
10.0
	  1.6 | 010 |   0.42% |  50.72%
	  3.1 | 020 |   2.21% |  51.68%
	  5.0 | 030 |   3.25% |  52.12%
	  6.9 | 040 |   2.69% |  51.66%
	  9.0 | 050 |   3.58% |  52.25%
	 10.3 | 060 |   3.73% |  52.06%
	 12.1 | 070 |   4.36% |  52.34%
100.0
	  1.5 | 010 |   0.42% |  50.72%
	  3.4 | 020 |   2.21% |  51.68%
	  4.9 | 030 |   3.25% |  52.12%
	  6.5 | 040 |   2.69% |  51.66%
	  8.0 | 050 |   3.57% |  52.25%
	  9.4 | 060 |   3.73% |  52.06%
	 11.0 | 070 |   4.36% |  52.34%
1000.0
	  1.9 | 010 |   0.42% |  50.72%
	  4.1 | 020 |   2.21% |  51.68%
	  5.8 | 030 |   3.25% |  52.12%
	  7.3 | 040 |   2.69% |  51.66%
	  8.8 | 050 |   3.57% |  52.25%
	 10.3 | 060 |   3.73% |  52.06%
	 12.0 | 070 |   4.36% |  52.34%
10000.0
	  1.8 | 010 |   0.42% |  50.72%
	  3.4 | 020 |   2.21% |  51.68%
	  4.8 | 030 |   3.25% |  52.12%
	  6.0 | 040 |   2.69% |  51.66%
	  7.6 | 050 |   3.57% |  52.25%
	  8.8 | 060 |   3.73% |  52.06%
	 10.2 | 070 |   4.36% |  52.34%
100000.0
	  1.8 | 010 |   0.42% |  50.72%
	  3.4 | 020 |   2.21% |  51.68%
	  4.9 | 030 |   3.25% |  52.12%
	  6.4 | 040 |   2.69% |  51.66%
	  7.8 | 050 |   3.57% |  52.25%
	  9.3 | 060 |   3.73% |  52.06%
	 10.7 | 070 |   4.36% |  52.34%

四、Evaluate Results 评估结果

python 复制代码
log_scores = pd.DataFrame(log_scores, columns=cols)
log_scores.to_hdf('data.h5', 'logistic/scores')

log_coeffs = pd.DataFrame(log_coeffs, index=X.columns).T
log_coeffs.to_hdf('data.h5', 'logistic/coeffs')

log_predictions = pd.concat(log_predictions)
log_predictions.to_hdf('data.h5', 'logistic/predictions')

log_scores = pd.read_hdf('data.h5', 'logistic/scores')

log_scores.info()

log_scores.groupby('C').auc.describe()

| | count | mean | std | min | 25% | 50% | 75% | max |
| C | | | | | | | | |
| 0.00001 | 75.0 | 0.524834 | 0.033162 | 0.462730 | 0.500238 | 0.520174 | 0.543183 | 0.608531 |
| 0.00010 | 75.0 | 0.525391 | 0.033182 | 0.465664 | 0.500457 | 0.520052 | 0.539332 | 0.617832 |
| 0.00100 | 75.0 | 0.525726 | 0.034815 | 0.442510 | 0.499963 | 0.521454 | 0.546595 | 0.637523 |
| 0.01000 | 75.0 | 0.525146 | 0.036003 | 0.447376 | 0.500513 | 0.519809 | 0.547387 | 0.633047 |
| 0.10000 | 75.0 | 0.523507 | 0.036001 | 0.439579 | 0.501279 | 0.517053 | 0.548712 | 0.617858 |
| 1.00000 | 75.0 | 0.523068 | 0.035935 | 0.438185 | 0.500740 | 0.516178 | 0.548256 | 0.614613 |
| 10.00000 | 75.0 | 0.523020 | 0.035928 | 0.438122 | 0.500564 | 0.516100 | 0.548231 | 0.614639 |
| 100.00000 | 75.0 | 0.523012 | 0.035928 | 0.438088 | 0.500543 | 0.516050 | 0.548237 | 0.614629 |
| 1000.00000 | 75.0 | 0.523011 | 0.035929 | 0.438074 | 0.500541 | 0.516038 | 0.548239 | 0.614629 |
| 10000.00000 | 75.0 | 0.523010 | 0.035929 | 0.438079 | 0.500541 | 0.516038 | 0.548239 | 0.614629 |

100000.00000 75.0 0.523010 0.035929 0.438079 0.500541 0.516038 0.548239 0.614629

五、Plot Validation Scores 绘制验证分数

python 复制代码
def plot_ic_distribution(df, ax=None):
    if ax is not None:
        sns.distplot(df.ic, ax=ax)    
    else:
        ax = sns.distplot(df.ic)
    mean, median = df.ic.mean(), df.ic.median()
    ax.axvline(0, lw=1, ls='--', c='k')
    ax.text(x=.05, y=.9, s=f'Mean: {mean:8.2f}\nMedian: {median:5.2f}',
            horizontalalignment='left',
            verticalalignment='center',
            transform=ax.transAxes)
    ax.set_xlabel('Information Coefficient')
    sns.despine()
    plt.tight_layout()

fig, axes= plt.subplots(ncols=2, figsize=(15, 5))

sns.lineplot(x='C', y='auc', data=log_scores, estimator=np.mean, label='Mean', ax=axes[0])
by_alpha = log_scores.groupby('C').auc.agg(['mean', 'median'])
best_auc = by_alpha['mean'].idxmax()
by_alpha['median'].plot(logx=True, ax=axes[0], label='Median', xlim=(10e-6, 10e5))
axes[0].axvline(best_auc, ls='--', c='k', lw=1, label='Max. Mean')
axes[0].axvline(by_alpha['median'].idxmax(), ls='-.', c='k', lw=1, label='Max. Median')
axes[0].legend()
axes[0].set_ylabel('AUC')
axes[0].set_xscale('log')
axes[0].set_title('Area Under the Curve')

plot_ic_distribution(log_scores[log_scores.C==best_auc], ax=axes[1])
axes[1].set_title('Information Coefficient')

fig.suptitle('Logistic Regression', fontsize=14)
sns.despine()
fig.tight_layout()
fig.subplots_adjust(top=.9);
相关推荐
CS_浮鱼8 分钟前
【Linux】线程
linux·c++·算法
zhanglei50003814 分钟前
一、机器学习概述
机器学习
Caven7717 分钟前
【2025版李宏毅机器学习系列课程】CH2 机器学习 Training Guide
人工智能·机器学习
Q264336502319 分钟前
【有源码】spark与hadoop-情感挖掘+画像建模的携程酒店评价数据分析可视化系统-基于机器学习的携程酒店评价情感分析与竞争态势可视化
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计
AndrewHZ1 小时前
【图像处理基石】如何入门图像配准算法?
图像处理·opencv·算法·计算机视觉·cv·图像配准·特征描述子
BanyeBirth1 小时前
C++窗口问题
开发语言·c++·算法
前端小L3 小时前
图论专题(十五):BFS的“状态升维”——带着“破壁锤”闯迷宫
数据结构·算法·深度优先·图论·宽度优先
橘颂TA5 小时前
【剑斩OFFER】算法的暴力美学——连续数组
c++·算法·leetcode·结构与算法
星释7 小时前
Rust 练习册 72:多米诺骨牌与回溯算法
开发语言·算法·rust
算法与编程之美9 小时前
提升minist的准确率并探索分类指标Precision,Recall,F1-Score和Accuracy
人工智能·算法·机器学习·分类·数据挖掘