LeetCode:84.完全平方数

目录

1.完全平方数


1.完全平方数

这道题通过动态规划来解决

首先我们设dp[i][j]表示从前i个完全平方数中凑成j所需的最少数量,设置m为sqrt(n),因为对于一个n来说,所需要的完全平方数大小不会超过sqrt(n),比如16,开完为4,最多需要的完全平方数就到4,不可能到5

对于状态转移方程,分为以下两种情况:

  1. 不选择第i个完全平方数,所以需要从前i - 1个中凑成j,dp[i][j] = dp[i - 1][j]
  2. 选择第i个,又分为以下情况:
    1. 选一个i,dp[i][j] = dp[i - 1][j - i * i] + 1
    2. 选两个i,dp[i][j] = dp[i - 1][j - 2 * (i * i)] + 2
    3. 最终可以表示为,dp[i][j] = dp[i][j - i * i] + 1

所以dp[i][j] = min(dp[i - 1][j], dp[i][j - i * i] + 1]

初始化的问题,我们需要用到上一个位置和左边的位置,所以需要从上到下,从左到右的初始化,同时注意边界问题,第0行第j列(1 <= j <= n)应当初始化为一个很大的值,表示不可能被选择,因为不会有从0个完全平方数中凑成j的情况

cpp 复制代码
class Solution {
public:
    int numSquares(int n) {
        const int INF = 0x3f3f3f3f;
        int m = sqrt(n);
        vector<vector<int>> dp(m + 1, vector<int>(n + 1));
        for(int j = 1; j <= n; j++) dp[0][j] = INF;
        for(int i = 1; i <= m; i++)
            for(int j = 0; j <= n; j++)
            {
                dp[i][j] = dp[i - 1][j];
                if(j >= i * i)
                    dp[i][j] = min(dp[i][j], dp[i][j - i * i] + 1);
            }
        return dp[m][n];
    }
};

空间优化后

cpp 复制代码
class Solution {
public:
    int numSquares(int n) {
        const int INF = 0x3f3f3f3f;
        int m = sqrt(n);
        vector<int> dp(n + 1, INF);
        dp[0] = 0;
        for(int i = 1; i <= m; i++)
            for(int j = i * i; j <= n; j++)
                    dp[j] = min(dp[j], dp[j - i * i] + 1);
        return dp[n];
    }
};
相关推荐
大胆飞猪3 小时前
递归、剪枝、回溯算法---全排列、子集问题(力扣.46,78)
算法·leetcode·剪枝
Kisorge5 小时前
【电机控制】基于STM32F103C8T6的二轮平衡车设计——LQR线性二次线控制器(算法篇)
stm32·嵌入式硬件·算法
铭哥的编程日记6 小时前
深入浅出蓝桥杯:算法基础概念与实战应用(二)基础算法(下)
算法·职场和发展·蓝桥杯
Swift社区6 小时前
LeetCode 421 - 数组中两个数的最大异或值
算法·leetcode·职场和发展
cici158746 小时前
基于高光谱成像和偏最小二乘法(PLS)的苹果糖度检测MATLAB实现
算法·matlab·最小二乘法
StarPrayers.7 小时前
自蒸馏学习方法
人工智能·算法·学习方法
大锦终7 小时前
【动规】背包问题
c++·算法·动态规划
智者知已应修善业8 小时前
【c语言蓝桥杯计算卡片题】2023-2-12
c语言·c++·经验分享·笔记·算法·蓝桥杯
hansang_IR8 小时前
【题解】洛谷 P2330 [SCOI2005] 繁忙的都市 [生成树]
c++·算法·最小生成树
Croa-vo9 小时前
PayPal OA 全流程复盘|题型体验 + 成绩反馈 + 通关经验
数据结构·经验分享·算法·面试·职场和发展