LeetCode:84.完全平方数

目录

1.完全平方数


1.完全平方数

这道题通过动态规划来解决

首先我们设dp[i][j]表示从前i个完全平方数中凑成j所需的最少数量,设置m为sqrt(n),因为对于一个n来说,所需要的完全平方数大小不会超过sqrt(n),比如16,开完为4,最多需要的完全平方数就到4,不可能到5

对于状态转移方程,分为以下两种情况:

  1. 不选择第i个完全平方数,所以需要从前i - 1个中凑成j,dp[i][j] = dp[i - 1][j]
  2. 选择第i个,又分为以下情况:
    1. 选一个i,dp[i][j] = dp[i - 1][j - i * i] + 1
    2. 选两个i,dp[i][j] = dp[i - 1][j - 2 * (i * i)] + 2
    3. 最终可以表示为,dp[i][j] = dp[i][j - i * i] + 1

所以dp[i][j] = min(dp[i - 1][j], dp[i][j - i * i] + 1]

初始化的问题,我们需要用到上一个位置和左边的位置,所以需要从上到下,从左到右的初始化,同时注意边界问题,第0行第j列(1 <= j <= n)应当初始化为一个很大的值,表示不可能被选择,因为不会有从0个完全平方数中凑成j的情况

cpp 复制代码
class Solution {
public:
    int numSquares(int n) {
        const int INF = 0x3f3f3f3f;
        int m = sqrt(n);
        vector<vector<int>> dp(m + 1, vector<int>(n + 1));
        for(int j = 1; j <= n; j++) dp[0][j] = INF;
        for(int i = 1; i <= m; i++)
            for(int j = 0; j <= n; j++)
            {
                dp[i][j] = dp[i - 1][j];
                if(j >= i * i)
                    dp[i][j] = min(dp[i][j], dp[i][j - i * i] + 1);
            }
        return dp[m][n];
    }
};

空间优化后

cpp 复制代码
class Solution {
public:
    int numSquares(int n) {
        const int INF = 0x3f3f3f3f;
        int m = sqrt(n);
        vector<int> dp(n + 1, INF);
        dp[0] = 0;
        for(int i = 1; i <= m; i++)
            for(int j = i * i; j <= n; j++)
                    dp[j] = min(dp[j], dp[j - i * i] + 1);
        return dp[n];
    }
};
相关推荐
Miraitowa_cheems27 分钟前
LeetCode算法日记 - Day 82: 环形子数组的最大和
java·数据结构·算法·leetcode·决策树·线性回归·深度优先
Code_Shark1 小时前
AtCoder Beginner Contest 426 题解
数据结构·c++·算法·数学建模·青少年编程
仰泳的熊猫1 小时前
LeetCode:698. 划分为k个相等的子集
数据结构·c++·算法·leetcode
豐儀麟阁贵1 小时前
4.5数组排序算法
java·开发语言·数据结构·算法·排序算法
Shinom1ya_2 小时前
算法 day 32
算法
WBluuue3 小时前
数据结构与算法:摩尔投票算法
c++·算法·leetcode
小羊学伽瓦3 小时前
【Java数据结构】——常见力扣题综合
java·数据结构·leetcode·1024程序员节
文火冰糖的硅基工坊4 小时前
[人工智能-大模型-66]:模型层技术 - 两种编程范式:数学函数式编程与逻辑推理式编程,构建起截然不同的智能系统。
人工智能·神经网络·算法·1024程序员节
im_AMBER4 小时前
Leetcode 34
算法·leetcode
im_AMBER4 小时前
Leetcode 31
学习·算法·leetcode