AI学习日记——参数的初始化

目录

一、权重初始化的重要性

[1. 为什么权重初始值不能为0](#1. 为什么权重初始值不能为0)

[2. 不良初始化的后果](#2. 不良初始化的后果)

二、初始化策略

[1. Xavier初始值](#1. Xavier初始值)

[2. He初始值](#2. He初始值)

总结


一、权重初始化的重要性

1. 为什么权重初始值不能为0

将权重初始值全部设为0会导致严重的对称性问题:

权重均一化原理:

  • 如果所有权重初始值相同,同一层的所有神经元会计算出相同的输出

  • 在反向传播时,这些神经元会收到相同的梯度更新

2. 不良初始化的后果

权重值过小的问题(如标准差0.01):

  • 激活值集中在0.5附近(对sigmoid),表现力受限:神经元输出过于相似,无法学习多样化特征,缺乏广度

权重值过大的问题(如标准差1):

  • 激活值集中在0和1 附近(对sigmoid),梯度消失**:**偏向0和1的数据分布会造成反向传播中梯度的值不断变小

二、初始化策略

1. Xavier初始值

使用场景

针对sigmoid和tanh等S型激活函数,左右对称且中间可以视为线性函数。

数学原理:

标准差 = ,其中n为前一层的节点数

代码实现:

node_num = 100 # 前一层的节点数

w = np.random.randn(node_num, node_num) / np.sqrt(node_num)

实验结果对比:

初始化方法 激活值分布 问题
标准差1.0 偏向0和1 梯度消失
标准差0.01 集中在0.5附近 表现力受限
Xavier初始化 分布相对均匀 效果最佳 * 正向传播:信息多样性得以保持 * 反向传播:梯度有效传递

2. He初始值

使用场景

He初始值策略针对于ReLU激活函数,解决非线性情况。

数学原理:

与Xavier初始值相似,标准差 = ,其中n为前一层的节点数。因为ReLU函数将负值置零,只有一半的神经元被激活,所以需要乘2保证广度。

实验结果对比:

代码实现:

node_num = 100 #前一层的节点数

w = np.random.randn(node_num, node_num) * np.sqrt(2.0 / node_num)


总结

神经网络权重初始化对模型性能至关重要。全零初始化会导致对称性问题,使神经元输出相同;过小初始化(如标准差0.01)会使激活值集中在0.5附近,限制表现力;过大初始化(如标准差1)则会导致梯度消失。针对不同激活函数应采用特定初始化策略:Xavier初始化适用于sigmoid/tanh函数,通过标准差=1/√n保证激活值均匀分布;He初始化专为ReLU设计,标准差=√(2/n)以补偿ReLU的负值抑制特性。实验证明,这两种方法能有效保持信息多样性和梯度传递,是深度学习模型的最佳初始化选择。

相关推荐
崇山峻岭之间1 分钟前
Matlab学习记录30
开发语言·学习·matlab
程序员爱德华6 分钟前
镜面检测 Mirror Detection
人工智能·计算机视觉·语义分割·镜面检测
寻星探路10 分钟前
【Python 全栈测开之路】Python 基础语法精讲(一):常量、变量与运算符
java·开发语言·c++·python·http·ai·c#
朔北之忘 Clancy16 分钟前
2020 年 6 月青少年软编等考 C 语言一级真题解析
c语言·开发语言·c++·学习·算法·青少年编程·题解
_codemonster16 分钟前
计算机视觉入门到实战系列(九) SIFT算法(尺度空间、极值点判断)
深度学习·算法·计算机视觉
莫非王土也非王臣24 分钟前
TensorFlow中卷积神经网络相关函数
人工智能·cnn·tensorflow
焦耳热科技前沿25 分钟前
西华大学Adv. Sci.:超高温焦耳热冲击制备拓扑缺陷碳,用于催化碳纳米管可控生长
大数据·人工智能·能源·材料工程·电池
智航GIS27 分钟前
10.5 PyQuery:jQuery 风格的 Python HTML 解析库
python·html·jquery
小兔崽子去哪了28 分钟前
机器学习,梯度下降,拟合,正则化,混淆矩阵
python·机器学习
亿坊电商31 分钟前
AI数字人开发框架如何实现多模态交互?
人工智能·交互