数字图像处理-领域平均滤波

1 实验题目

如何采用邻域平均滤波消除图像中比 q*q 像素块小的目标。设想要将目标的平均 灰度值减少为原来平均灰度值的 1/8。用这种方法,那些目标可以接近背景灰度并用 门限法消除。给出平均掩模的最小尺寸(奇数)。该掩模仅对整幅图像处理一次就将平 均灰度级减少到所希望的程度,并用 matlab 编程说明。

2 解答

邻域平均滤波是一种常用的图像处理方法,可以通过计算像素周围邻域的平均 值来实现图像平滑。在消除图像中比 q*q 像素块小的目标时,可以采用以下步骤:

(1)确定目标区域的大小:根据题目要求,目标的平均灰度值需要减少为原来的 1/8, 因此可以通过计算目标区域的平均灰度值来确定目标区域的大小。

(2)计算邻域平均值:对于每个像素,计算其周围 q*q 大小的邻域的平均灰度值。

(3)判断目标与背景:将每个像素的灰度值与邻域平均值进行比较,如果差值小于门 限值,则将该像素视为目标,否则视为背景。

(4)重建图像:将目标像素的灰度值设置为背景灰度值,即将目标接近背景灰度。

(5)应用门限法:根据题目要求,可以使用门限法将目标从图像中消除。

3 程序源代码

Matlab 复制代码
% 读取图像
image = imread('a.jpg');
% 定义掩模尺寸
maskSize = 3; % 假设掩模尺寸为 3x3
% 计算图像大小
[height, width] = size(image);
% 创建输出图像
outputImage = zeros(height, width);
% 遍历图像像素
for i = 1:height
for j = 1:width
% 计算邻域范围
startRow = max(1, i - floor(maskSize/2));
endRow = min(height, i + floor(maskSize/2));
startCol = max(1, j - floor(maskSize/2));
endCol = min(width, j + floor(maskSize/2));
% 计算邻域平均值
neighborhood = image(startRow:endRow, startCol:endCol);
averageValue = mean(neighborhood(:));
% 判断目标与背景
threshold=200;
if abs(image(i, j) - averageValue) < threshold
outputImage(i, j) = averageValue;
else
outputImage(i, j) = image(i, j);
end
end
end
% 应用门限法消除目标
outputImage(outputImage < threshold) = 0;
% 显示结果图像
imshow(outputImage);
相关推荐
hoiii18714 分钟前
基于LSB匹配的隐写术MATLAB实现程序
开发语言·matlab
shangjian00714 分钟前
AI大模型-机器学习-分类
人工智能·机器学习·分类
计算机小手24 分钟前
Docker 部署 weserv-images:打造非侵入式图片处理中间件
图像处理·经验分享·docker·中间件
AI科技星1 小时前
光速飞行器动力学方程的第一性原理推导、验证与范式革命
数据结构·人工智能·线性代数·算法·机器学习·概率论
民乐团扒谱机1 小时前
【微实验】基于MATLAB的一维条材下料优化问题求解
数学建模·matlab·线性规划·最优化模型·整数线性规划
步达硬件1 小时前
【Matlab】批量自定义图像处理
开发语言·matlab
崇山峻岭之间1 小时前
Matlab学习记录32
开发语言·学习·matlab
小棠师姐1 小时前
零基础入门卷积运算:计算机视觉的数学基础
人工智能·计算机视觉
小鸡吃米…1 小时前
机器学习 - 亲和传播算法
python·机器学习·亲和传播
非凡ghost2 小时前
ImageConverter(图像转换编辑工具)
图像处理·人工智能·windows·学习·计算机视觉·软件需求