数字图像处理-领域平均滤波

1 实验题目

如何采用邻域平均滤波消除图像中比 q*q 像素块小的目标。设想要将目标的平均 灰度值减少为原来平均灰度值的 1/8。用这种方法,那些目标可以接近背景灰度并用 门限法消除。给出平均掩模的最小尺寸(奇数)。该掩模仅对整幅图像处理一次就将平 均灰度级减少到所希望的程度,并用 matlab 编程说明。

2 解答

邻域平均滤波是一种常用的图像处理方法,可以通过计算像素周围邻域的平均 值来实现图像平滑。在消除图像中比 q*q 像素块小的目标时,可以采用以下步骤:

(1)确定目标区域的大小:根据题目要求,目标的平均灰度值需要减少为原来的 1/8, 因此可以通过计算目标区域的平均灰度值来确定目标区域的大小。

(2)计算邻域平均值:对于每个像素,计算其周围 q*q 大小的邻域的平均灰度值。

(3)判断目标与背景:将每个像素的灰度值与邻域平均值进行比较,如果差值小于门 限值,则将该像素视为目标,否则视为背景。

(4)重建图像:将目标像素的灰度值设置为背景灰度值,即将目标接近背景灰度。

(5)应用门限法:根据题目要求,可以使用门限法将目标从图像中消除。

3 程序源代码

Matlab 复制代码
% 读取图像
image = imread('a.jpg');
% 定义掩模尺寸
maskSize = 3; % 假设掩模尺寸为 3x3
% 计算图像大小
[height, width] = size(image);
% 创建输出图像
outputImage = zeros(height, width);
% 遍历图像像素
for i = 1:height
for j = 1:width
% 计算邻域范围
startRow = max(1, i - floor(maskSize/2));
endRow = min(height, i + floor(maskSize/2));
startCol = max(1, j - floor(maskSize/2));
endCol = min(width, j + floor(maskSize/2));
% 计算邻域平均值
neighborhood = image(startRow:endRow, startCol:endCol);
averageValue = mean(neighborhood(:));
% 判断目标与背景
threshold=200;
if abs(image(i, j) - averageValue) < threshold
outputImage(i, j) = averageValue;
else
outputImage(i, j) = image(i, j);
end
end
end
% 应用门限法消除目标
outputImage(outputImage < threshold) = 0;
% 显示结果图像
imshow(outputImage);
相关推荐
春日见1 小时前
如何跑通,吃透一个开源项目?
linux·运维·开发语言·数码相机·matlab
攻城狮-frank1 小时前
【机器学习】直观理解DPO与PPO:大模型优化的两种核心策略
人工智能·机器学习
技术净胜1 小时前
MATLAB数据清洗流程包含:缺失值处理/异常值检测/重复值删除
开发语言·matlab
黑客思维者1 小时前
机器学习009:监督学习【回归算法】(岭回归)-- 给模型一个“清醒”的约束
学习·机器学习·回归·监督学习·岭回归
JoannaJuanCV2 小时前
自动驾驶—CARLA仿真(20)manual_control demo
人工智能·机器学习·自动驾驶·carla
最晚的py2 小时前
聚类的评估方法
人工智能·算法·机器学习
高洁012 小时前
DNN案例一步步构建深层神经网络(3)
python·深度学习·算法·机器学习·transformer
啊巴矲2 小时前
小白从零开始勇闯人工智能:机器学习初级篇(线性回归与逻辑回归)
人工智能·机器学习·线性回归
cici158742 小时前
MATLAB全景拼接完整实现方案
图像处理·计算机视觉·matlab
deardao2 小时前
【时序异常检测综述】十年回顾:深入研究时间序列异常检测
人工智能·机器学习·时间序列·事件检测