PyTorch 实现 MNIST 手写数字识别完整流程(含数据处理、模型构建与训练可视化)

引言

MNIST 数据集是手写数字识别的经典 benchmark 数据集,包含 0-9 共 10 类手写数字图像(每张图像尺寸为 28×28)。本文将基于 PyTorch 框架,完整演示从数据准备、数据可视化、神经网络构建到模型训练与结果分析的全流程,帮助新手快速上手 PyTorch 深度学习实践。

一、环境准备与库导入

首先导入所需的第三方库

二、数据准备与预处理

1. 定义超参数

设置训练 / 测试批次大小、学习率、训练轮数等关键超参数:

2. 数据预处理与加载

使用 transforms 对图像进行张量转换标准化 ,再通过 DataLoader 生成可迭代的数据集(自动分批、打乱等):

三、源数据可视化

为直观感受数据,我们可视化测试集中的部分样本:

四、构建神经网络模型

定义一个多层感知机(MLP),包含 "展平层 + 两个隐藏层(带 BatchNorm) + 输出层",使用 ReLU 激活函数与 Softmax 输出:

模型输入为 784 维(28×28 展平),经两层隐藏层(300、100 个神经元)后,输出 10 维(对应 0-9 分类)

五、模型实例化与配置

指定设备(GPU/CPU) 、实例化模型,并配置损失函数优化器

六、模型训练与评估

训练过程中记录损失准确率,并在测试集上周期性评估模型性能:

训练过程中,可观察到训练损失逐渐下降准确率逐渐上升,测试集性能也随之提升(若过拟合,测试集性能会提前趋于平稳)。

七、训练结果可视化

绘制训练损失曲线,直观分析模型收敛过程:

总结

本文基于 PyTorch 完成了 MNIST 手写数字识别的全流程实践,核心环节包括:

数据处理 :加载、预处理 MNIST 数据,通过 DataLoader 批量迭代;

数据可视化:直观展示手写数字样本与真实标签;

模型构建:自定义多层感知机,结合 BatchNorm 加速训练;

训练与评估:使用 SGD 优化器,动态调整学习率,同时记录训练与测试指标;

结果可视化:绘制损失曲线,分析模型收敛过程。

相关推荐
爱喝可乐的老王14 分钟前
PyTorch简介与安装
人工智能·pytorch·python
看我干嘛!18 分钟前
第三次python作业
服务器·数据库·python
deephub19 分钟前
用 PyTorch 实现 LLM-JEPA:不预测 token,预测嵌入
人工智能·pytorch·python·深度学习·大语言模型
量子-Alex23 分钟前
【多模态大模型】Qwen2-VL项目代码初步解析
人工智能
飞鹰5131 分钟前
深度学习算子CUDA优化实战:从GEMM到Transformer—Week4学习总结
c++·人工智能·深度学习·学习·transformer
工程师老罗33 分钟前
Pytorch如何验证模型?
人工智能·pytorch·深度学习
Hi_kenyon34 分钟前
Skills精选
人工智能
我的xiaodoujiao42 分钟前
使用 Python 语言 从 0 到 1 搭建完整 Web UI自动化测试学习系列 44--将自动化测试结果自动推送至钉钉工作群聊
前端·python·测试工具·ui·pytest
沈浩(种子思维作者)42 分钟前
铁的居里点(770度就不被磁铁吸了)道理是什么?能不能精确计算出来?
人工智能·python·flask·量子计算
沛沛老爹44 分钟前
Web开发者转型AI:多模态Agent视频分析技能开发实战
前端·人工智能·音视频