数论探秘:如何用模4思想破解平方数谜题

试题展示

(1)写出三个不同的正整数,使得其中任意两个数的乘积与10的和都是完全平方数,请予以验证.

(2)是否存在四个不同的正整数,使得其中任意两个数的乘积与10的和都是完全平方数?请证明你的结论.

解答

关键推导

对于任意 n ∈ N ∗ n \in \mathbb{N}^* n∈N∗, n 2 ≡ 0 , 1 ( m o d 4 ) n^2 \equiv 0,1 \pmod{4} n2≡0,1(mod4).

设 a , b a,b a,b是两个不同的正整数:

  1. 若 a ≡ 0 ( m o d 4 ) a \equiv 0 \pmod{4} a≡0(mod4)或 b ≡ 0 ( m o d 4 ) b \equiv 0 \pmod{4} b≡0(mod4) ,或 a ≡ b ≡ 2 ( m o d 4 ) a \equiv b \equiv 2 \pmod{4} a≡b≡2(mod4),则 a b ≡ 0 ( m o d 4 ) ab \equiv 0 \pmod{4} ab≡0(mod4),此时 a b + 10 ≡ 2 ( m o d 4 ) ab + 10 \equiv 2 \pmod{4} ab+10≡2(mod4),故 a b + 10 ab + 10 ab+10不是完全平方数.
  2. 若 a ≡ b ≡ 1 ( m o d 4 ) a \equiv b \equiv 1 \pmod{4} a≡b≡1(mod4)或 a ≡ b ≡ 3 ( m o d 4 ) a \equiv b \equiv 3 \pmod{4} a≡b≡3(mod4) ,则 a b ≡ 1 ( m o d 4 ) ab \equiv 1 \pmod{4} ab≡1(mod4),此时 a b + 10 ≡ 3 ( m o d 4 ) ab + 10 \equiv 3 \pmod{4} ab+10≡3(mod4),故 a b + 10 ab + 10 ab+10不是完全平方数.

由此可知, a b + 10 ab + 10 ab+10是完全平方数的必要不充分条件 是 a , b   m o d   4 a,b \bmod{4} a,bmod4不同余,且 a , b a,b a,b均不被4整除.


(1)构造三个满足条件的数

例如取 a = 2 a=2 a=2, b = 3 b=3 b=3, c = 13 c=13 c=13:

  • 2 × 3 + 10 = 16 = 4 2 2 \times 3 + 10 = 16 = 4^2 2×3+10=16=42
  • 2 × 13 + 10 = 36 = 6 2 2 \times 13 + 10 = 36 = 6^2 2×13+10=36=62
  • 3 × 13 + 10 = 49 = 7 2 3 \times 13 + 10 = 49 = 7^2 3×13+10=49=72

结论 : ( 2 , 3 , 13 ) (2, 3, 13) (2,3,13)是满足题意的一组正整数.


(2)证明四个数不可能存在

  • 情况1 :若四个数中存在4的倍数,则其与其他数的积加10必为 2 ( m o d 4 ) 2 \pmod{4} 2(mod4),矛盾.
  • 情况2 :若四个数均非4的倍数,则根据鸽巢原理,至少有两个数模4同余(余数只能是1,2,3),此时它们的积加10为 3 ( m o d 4 ) 3 \pmod{4} 3(mod4),矛盾.

最终结论:不存在四个满足条件的正整数.

相关推荐
sheeta199815 分钟前
LeetCode 每日一题笔记 日期:2025.11.24 题目:1018. 可被5整除的二进制前缀
笔记·算法·leetcode
LFly_ice18 分钟前
学习React-24-路由传参
前端·学习·react.js
陈天伟教授1 小时前
基于学习的人工智能(3)机器学习基本框架
人工智能·学习·机器学习·知识图谱
毕设源码-钟学长1 小时前
【开题答辩全过程】以 高校课程学习评价系统设计与实现为例,包含答辩的问题和答案
学习
chinesegf1 小时前
图文并茂的笔记、便签是如何用py开发的
笔记·状态模式
fruge3 小时前
从第三方库中偷师:学习 Lodash 的函数封装技巧
学习
lingggggaaaa6 小时前
免杀对抗——C2远控篇&C&C++&DLL注入&过内存核晶&镂空新增&白加黑链&签名程序劫持
c语言·c++·学习·安全·网络安全·免杀对抗
陈天伟教授6 小时前
基于学习的人工智能(5)机器学习基本框架
人工智能·学习·机器学习
我先去打把游戏先6 小时前
ESP32学习笔记(基于IDF):基于OneNet的ESP32的OTA功能
笔记·物联网·学习·云计算·iphone·aws
初願致夕霞6 小时前
学习笔记——基础hash思想及其简单C++实现
笔记·学习·哈希算法