大模型微调(四):人类反馈强化学习(RLHF)

RLHF 是一种特殊的强化学习,它使用与经典强化学习相同的数学框架,但核心却截然不同。

让我们先从"奖励"的区别说起。

在普通的强化学习中:智能体与环境交互。每一步,它都会执行一个动作 a_t,获得一个奖励 r_t,并更新其策略以最大化预期的未来奖励。奖励信号内置于环境中,例如,游戏得分、机器人与目标的距离,或明确的成功/失败衡量标准。

\max_\pi \; \mathbb{E}_\pi\left[\sum_t \gamma^t r_t\right]

在基于人类反馈的强化学习 (RLHF) 中:没有自然的奖励函数,模型不会玩游戏或赢得积分。相反,人类会提供偏好反馈。假设给定两个响应:响应 A 和 响应 B。人类会标记哪个响应感觉更好:更有帮助、更无害或更诚实。

通过这些比较,一个奖励模型 R_\phi(x, y) 被训练来预测人类的偏好。然后,大模型的"策略",也就是模型生成响应的方式会被优化,以最大化这个学习到的奖励函数,而不是外部的奖励函数。

微调仍然使用强化学习算法,通常是 PPO(近端策略优化,需要奖励模型,代价比较高)或是 DRPO(直接策略优化,快速经济的方案), 来更新模型的权重。PPO优化目标为:

\max_\theta \; \mathbb{E}{y \sim \pi_\theta}[R_\phi(x, y)]

但在这里,R_\phi 代表的是人类的价值观,而不是世界上的客观数字。

相关推荐
椰壳也可3 小时前
06_作业基于CubeMx实现按键控制LED灯(裸机)(立芯嵌入式笔记)
笔记·stm32·学习
im_AMBER4 小时前
Leetcode 52
笔记·学习·算法·leetcode
gorgeous(๑>؂<๑)4 小时前
【ICLR26匿名投稿】OneTrackerV2:统一多模态目标跟踪的“通才”模型
人工智能·机器学习·计算机视觉·目标跟踪
周杰伦_Jay4 小时前
【智能体(Agent)技术深度解析】从架构到实现细节,核心是实现“感知环境→处理信息→决策行动→影响环境”的闭环
人工智能·机器学习·微服务·架构·golang·数据挖掘
ytttr8735 小时前
Landweber迭代算法用于一维、二维图像重建
人工智能·算法·机器学习
wdfk_prog6 小时前
[Linux]学习笔记系列 -- [kernel]kallsyms
linux·笔记·学习
hongjianMa6 小时前
【论文阅读】Hypercomplex Prompt-aware Multimodal Recommendation
论文阅读·python·深度学习·机器学习·prompt·推荐系统
!chen7 小时前
CPP 学习笔记 语法总结
c++·笔记·学习
现在,此刻7 小时前
李沐深度学习笔记D3-线性回归
笔记·深度学习·线性回归
能来帮帮蒟蒻吗8 小时前
深度学习(2)—— 神经网络与训练
人工智能·深度学习·神经网络