1.基本要素
在一类情景中,模型输出可以是一个像图像类别这样的离散值。对于这样的离散值预测问题,我们可以使用诸如softmax回归在内的分类模型。和线性回归不同,softmax回归的输出单元从一个变成了多个,且引入了softmax运算使输出更适合离散值的预测和训练 。
(1)回归模型
softmax回归的输出值个数等于标签里的类别数。因为一共有4种特征和3种输出动物类别,所以权重包含12个标量(带下标的w)、偏差包含3个标量(带下标的b),且对每个输入计算o1,o2,o3这三个输出:
o1=x1w11+x2w21+x3w31+x4w41+b1
o2=x1w12+x2w22+x3w32+x4w42+b2
o3=x1w13+x2w23+x3w33+x4w43+b3
既然分类问题需要得到离散的预测输出,一个简单的办法是将输出值oi当作预测类别是i的置信度,并将值最大的输出所对应的类作为预测输出,即输出 argimaxoi。
(2)单样本分类的矢量表达式
W = [
[w11, w12, w13],
[w21, w22, w23],
[w31, w32, w33],
[w41, w42, w43]]
b = [b1, b2, b3]
设高和宽分别为2个像素的图像样本i的特征为
x^(i) = [x1^(i), x2^(i), x3^(i), x4^(i)]
预测为狗、猫或鸡的概率分布为
ŷ^(i) = [ŷ₁^(i), ŷ₂^(i), ŷ₃^(i)]ᵀ
矢量计算表达式为
o^(i) = x^(i) W + b
ŷ^(i) = softmax(o^(i))
2.图像分类数据集Fashion-MNIST
(1)获取数据集
python
mnist_train=torchvision.datasets.FashionMNIST(root="../Datasets/FashionMNIST",train=True,download=True,
transform=transforms.ToTensor())
mnist_test=torchvision.datasets.FashionMNIST(root="../Datasets/FashionMNIST",train=False,download=True,
transform=transforms.ToTensor())
(2)读取小批量
python
batch_size=256
#获取当前操作系统平台信息
if sys.platform.startswith('win'):
#windows系统下不使用多进程
num_workers=0
else:
num_workers=4
train_iter=torch.utils.data.DataLoader(mnist_train,batch_size=batch_size,shuffle=True,num_workers=num_workers)
test_iter=torch.utils.data.DataLoader(mnist_test,batch_size=batch_size,shuffle=False,num_workers=num_workers)
3.使用PyTorch实现
(1)获取和读取数据
python
batch_size=256
train_iter,test_iter=d2lzh.load_data_fashion_mnist(batch_size)
(2)定义和初始化模型
python
num_inputs=784
num_outputs=10
class LinearNet(nn.Module):
def __init__(self,num_inputs,num_outputs):
super(LinearNet,self).__init__()
self.linear=nn.Linear(num_inputs,num_outputs)
def forward(self,x):
y=self.linear(x.view(x.shape[0],-1))
return y
net=LinearNet(num_inputs,num_outputs)
class FlattenLayer(nn.Module):
def __init__(self):
super(FlattenLayer, self).__init__()
def forward(self, x): # x shape: (batch, *, *, ...)
return x.view(x.shape[0], -1)
net=nn.Sequential(
FlattenLayer(),
nn.Linear(num_inputs,num_outputs)
)
#初始化模型参数
init.normal_(net.linear.weight,mean=0,std=0.01)
init.constant_(net.linear.bias,val=0)
(3)交叉熵损失函数
PyTorch提供了一个包括softmax运算和交叉熵损失计算的函数。它的数值稳定性更好。
python
loss = nn.CrossEntropyLoss()
(4)定义优化算法
python
optimizer=torch.optim.SGD(net.parameters(),lr=0.1)
(5)训练模型
python
def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, params=None, lr=None, optimizer=None):
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y).sum()
# 梯度清零
if optimizer is not None:
optimizer.zero_grad()
elif params is not None and params[0].grad is not None:
for param in params:
param.grad.data.zero_()
l.backward()
if optimizer is None:
d2l.sgd(params, lr, batch_size)
else:
optimizer.step()
train_l_sum += l.item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
n += y.shape[0]
test_acc = d2l.evaluate_accuracy(test_iter, net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
% (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))
num_epochs=5
train_ch3(net,train_iter, test_iter, loss, num_epochs, batch_size, None,None,optimizer)