- 🍨 本文为 🔗365天深度学习训练营中的学习记录博客
- 🍖 原作者: K同学啊
目录
[2.1 构建词典](#2.1 构建词典)
[2.2 生成数据批次和迭代器](#2.2 生成数据批次和迭代器)
[2.3 构建数据集](#2.3 构建数据集)
[3.1 定义位置编码函数](#3.1 定义位置编码函数)
[3.2 定义transformer模型](#3.2 定义transformer模型)
[3.3 定义模型训练和评估函数](#3.3 定义模型训练和评估函数)
一、准备工作
import torch
from torch import nn
import torchvision
from torchvision import transforms,datasets
import os,PIL,pathlib,warnings
warnings.filterwarnings("ignore") # 忽略警告信息
device = torch.device("cuda" if torch.cuda.is_available else "cpu")
device
import pandas as pd
train_data = pd.read_csv('./data/TR5/train.csv',sep='\t',header=None)
train_data.head()

# 构造数据集迭代器
def custom_data_iter(texts,labels):
for x,y in zip(texts,labels):
yield x,y
train_iter = custom_data_iter(train_data[0].values[:],train_data[1].values[:])
二、数据预处理
2.1 构建词典
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
import jieba
# 中文分词方法
tokenizer = jieba.lcut
def yield_tokens(data_iter):
for text,_ in data_iter:
yield tokenizer(text)
vocab = build_vocab_from_iterator(yield_tokens(train_iter),specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"])
label_name = list(set(train_data[1].values))
text_pipeline = lambda x:vocab(tokenizer(x))
label_pipeline = lambda x:label_name.index(x)
2.2 生成数据批次和迭代器
from torch.utils.data import DataLoader
def collate_batch(batch) :
label_list, text_list,offsets = [],[],[0]
for (_text,_label) in batch:
#标签列表
label_list.append( label_pipeline(_label))
#文本列表
processed_text = torch.tensor(text_pipeline(_text),dtype=torch.int64)
text_list.append(processed_text)
#偏移量,即语句的总词汇量
offsets.append( processed_text.size(0))
label_list = torch.tensor(label_list,dtype=torch.int64)
text_list = torch.cat(text_list)
offsets = torch.tensor(offsets[ :-1]).cumsum(dim=0)#返回维度dim中输入元素的累计和
return text_list.to(device),label_list.to(device),offsets.to(device)
2.3 构建数据集
from torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
BATCH_SIZE = 4
train_iter = custom_data_iter(train_data[0].values,train_data[1].values)
train_dataset = to_map_style_dataset(train_iter)
split_train,split_valid = random_split(train_dataset,[int(len(train_dataset)*0.8),int(len(train_dataset)*0.2)])
train_dataloader = DataLoader(split_train,batch_size=BATCH_SIZE,shuffle=True,collate_fn=collate_batch)
valid_dataloader = DataLoader(split_valid,batch_size=BATCH_SIZE,shuffle=True,collate_fn=collate_batch)
三、模型构建
3.1 定义位置编码函数
import math, os, torch
import torch.nn as nn
class PositionalEncoding(nn.Module):
def __init__(self, embed_dim, max_len=500):
super(PositionalEncoding, self).__init__()
# 创建一个大小为 [max_len, embed_dim] 的零张量
pe = torch.zeros(max_len, embed_dim)
# 创建一个形状为 [max_len, 1] 的位置索引张量
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, embed_dim, 2).float() * (-math.log(100.0) / embed_dim))
pe[:, 0::2] = torch.sin(position * div_term) # 计算 PE(pos, 2i)
pe[:, 1::2] = torch.cos(position * div_term) # 计算 PE(pos, 2i+1)
pe = pe.unsqueeze(0).transpose(0, 1)
# 将位置编码张量注册为模型的缓冲区,参数不参与梯度下降,保存model的时候会将其保存下来
self.register_buffer('pe', pe)
def forward(self, x):
# 将位置编码添加到输入张量中,注意位置编码的形状
x = x + self.pe[:x.size(0)]
return x
3.2 定义transformer模型
from tempfile import TemporaryDirectory
from typing import Tuple
from torch import nn, Tensor
from torch.nn import TransformerEncoder, TransformerEncoderLayer
from torch.utils.data import Dataset
class TransformerModel(nn.Module):
def __init__(self, vocab_size, embed_dim, num_class, nhead=8, d_hid=256, nlayers=12, dropout=0.1):
super().__init__()
self.embedding = nn.EmbeddingBag(vocab_size, # 词典大小
embed_dim, # 嵌入的维度
sparse=False) #
self.pos_encoder = PositionalEncoding(embed_dim)
# 定义编码器层
encoder_layers = TransformerEncoderLayer(embed_dim, nhead, d_hid, dropout)
self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
self.embed_dim = embed_dim
self.linear = nn.Linear(embed_dim*4, num_class)
def forward(self, src, offsets, src_mask=None):
src = self.embedding(src, offsets)
src = self.pos_encoder(src)
output = self.transformer_encoder(src, src_mask)
output = output.view(4, self.embed_dim*4)
output = self.linear(output)
return output
vocab_size = len(vocab) # 词汇表的大小
embed_dim = 64 # 嵌入维度
num_class = len(label_name)
# 创建 Transformer 模型,并将其移动到设备上
model = TransformerModel(vocab_size,
embed_dim,
num_class).to(device)
3.3 定义模型训练和评估函数
import time
def train(dataloader):
model.train() # 切换为训练模式
total_acc, train_loss, total_count = 0, 0, 0
log_interval = 300
start_time = time.time()
for idx, (text, label, offsets) in enumerate(dataloader):
predicted_label = model(text, offsets)
optimizer.zero_grad() # grad属性归零
loss = criterion(predicted_label, label) # 计算网络输出和真实值之间的差距,label为真实值
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
total_acc += (predicted_label.argmax(1) == label).sum().item()
train_loss += loss.item()
total_count += label.size(0)
if idx % log_interval == 0 and idx > 0:
elapsed = time.time() - start_time
print('| epoch {:1d} | {:4d}/{:4d} batches '
'| train_acc {:.3f} train_loss {:.5f}'.format(epoch, idx, len(dataloader),
total_acc/total_count, train_loss/total_count))
total_acc, train_loss, total_count = 0, 0, 0
start_time = time.time()
def evaluate(dataloader):
model.eval() # 切换为测试模式
total_acc, train_loss, total_count = 0, 0, 0
with torch.no_grad():
for idx, (text, label, offsets) in enumerate(dataloader):
predicted_label = model(text, offsets)
loss = criterion(predicted_label, label) # 计算loss值
# 记录测试数据
total_acc += (predicted_label.argmax(1) == label).sum().item()
train_loss += loss.item()
total_count += label.size(0)
return total_acc/total_count, train_loss/total_count
四、模型训练
import time
import torch
# 超参数
EPOCHS = 10
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)
for epoch in range(1, EPOCHS + 1):
epoch_start_time = time.time()
train(train_dataloader)
val_acc, val_loss = evaluate(valid_dataloader)
# 获取当前的学习率
lr = optimizer.state_dict()['param_groups'][0]['lr']
print('-' * 69)
print('| epoch {:1d} | time: {:4.2f}s | '
'valid_acc {:4.3f} valid_loss {:4.3f} | lr {:4.6f}'.format(epoch,
time.time() - epoch_start_time,
val_acc, val_loss, lr))
print('-' * 69)

test_acc, test_loss = evaluate(valid_dataloader)
print('模型准确率为:{:5.4f}'.format(test_acc))
