安装Pytorch GPU+CPU版本【通过本地安装解决无法使用pip指令下载问题】

安装Pytorch GPU+CPU版本

本文方案为 只用驱动 + GPU 版 PyTorch

一、检查环境

1.检查CUDA版本

在命令行(CMD 或 PowerShell)运行:

复制代码
nvidia-smi

如果你看到 NVIDIA 驱动信息(例如 RTX 3060、CUDA Version 12.8),说明显卡驱动安装正常。
如果这个命令报错,说明 NVIDIA 驱动都没装好,请先安装驱动。

正常输出示例:

复制代码
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 573.24                 Driver Version: 573.24         CUDA Version: 12.8     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                  Driver-Model | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 5060 ...  WDDM  |   00000000:01:00.0  On |                  N/A |
| N/A   48C    P4             14W /  115W |    1697MiB /   8151MiB |      1%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI              PID   Type   Process name                        GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|

这里可以看到CUDA型号,如:12.8。

2.检查Python版本

打开命令行输入:

复制代码
python --version

输出:

复制代码
Python 3.12.10

二、安装Pytorch

1.pip下载安装

官方链接:https://pytorch.org/get-started/locally/

清华源:

复制代码
pip install torch torchvision torchaudio --no-cache-dir -i https://pypi.tuna.tsinghua.edu.cn/simple

1.1GPU版本安装

在这里选择对应的CUDA版本即可生成pip指令,在PyCharm的终端里直接运行即可安装成功。

1.2CPU版本安装

直接选择CPU即可。

2.pip本地安装【GPU版本】

在国内使用生成的pip指令大概率是连不通的,尝试使用镜像源发现,似乎这会默认安装 CPU 版(可能是因为 PyPI 不区分 CUDA)。

所以这里提供第二种方案:使用pip指令本地安装

2.1下载.whl文件

打开 PyTorch 官方下载页面:https://download.pytorch.org/whl/cu128/

这个链接就是在[二、1.1]中生成的pip指令末尾的链接,本文以CUDA12.8为示例。

2.2选择对应版本

示例:

文件名 系统 Python版本 GPU支持 说明
torch-2.7.0+cu128-cp310-cp310-win_amd64.whl ✅ Windows 3.10 ✅ CUDA 12.8 适合RTX + Windows
torch-2.7.0+cu128-cp310-cp310-manylinux_2_28_x86_64.whl ✅ Linux 3.10 ✅ CUDA 12.8 服务器或 WSL 上用
torch-2.7.0+cu128-cp310-cp310-manylinux_2_28_aarch64.whl ✅ Linux ARM 3.10 ✅ CUDA 12.8 Jetson、树莓派等 ARM 平台
torch-2.4.1+cpu-cp38-cp38-win_amd64.whl ✅ Windows 3.8 ❌ CPU only 无 GPU 加速版

跟据自己的CUDA版本和Python版本选择匹配的文件,比如:

复制代码
torch-2.4.1+cu128-cp38-cp38-win_amd64.whl
torchvision-0.19.1+cu128-cp38-cp38-win_amd64.whl
torchaudio-2.4.1+cu128-cp38-cp38-win_amd64.whl

2.3安装

下载后放在同一目录下,然后在该目录中执行:

复制代码
pip install torch-2.4.1+cu128-cp38-cp38-win_amd64.whl
pip install torchvision-0.19.1+cu128-cp38-cp38-win_amd64.whl
pip install torchaudio-2.4.1+cu128-cp38-cp38-win_amd64.whl

这样就能在离线环境下成功安装 GPU 版。

三、验证【GPU 版】

安装完后运行 Python:

python 复制代码
import torch

print("PyTorch 版本:", torch.__version__)
print("CUDA 版本:", torch.version.cuda)
print("CUDA 是否可用:", torch.cuda.is_available())
print("GPU 数量:", torch.cuda.device_count())
print("当前 GPU 名称:", torch.cuda.get_device_name(0) if torch.cuda.is_available() else "无 GPU")

根据输出即可确认是否正确安装。

相关推荐
my1_1my3 小时前
深度学习中的两个不确定性
人工智能·深度学习
小范馆3 小时前
AI大模型-深度学习相关概念
人工智能·深度学习
大连好光景3 小时前
LSTM模型做二分类(PyTorch实现)
pytorch·分类·lstm
B站计算机毕业设计之家3 小时前
计算机视觉:基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的零售柜商品检测识别系统(Python+PySide6界面+训练代码)(源码+文档)✅
人工智能·深度学习·opencv·yolo·计算机视觉·零售·1024程序员节
golang学习记3 小时前
用好 Cursor Composer:把 AI 多文件编辑能力真正转化为生产力
人工智能
背包客研究3 小时前
小模型是AI Agent的未来
人工智能·搜索引擎
oscar9994 小时前
1.1 神经网络基本组成
人工智能·深度学习·神经网络
john_hjy4 小时前
AI 训练套件
人工智能
新智元4 小时前
1300 亿美元,买断 AGI 未来?OpenAI 完成 5 千亿股改,奥特曼 0 股权
人工智能·openai