介绍一下 multiprocessing 的 Manager模块

在 Python 的 multiprocessing 模块中,Manager 是一个用于跨进程共享数据 的工具。由于多进程之间内存空间相互独立(不同于多线程共享同一内存),普通的变量、列表、字典等无法直接在进程间共享,而 Manager 提供了一种便捷的方式来创建可在多个进程间安全共享的对象。

Manager 的核心作用

Manager 通过创建一个服务器进程(manager process)来管理共享对象,其他进程通过网络连接(本地进程间通信)访问这个服务器进程中的对象。所有进程对共享对象的操作都会通过服务器进程中转,从而保证了数据的一致性和安全性。

支持的共享对象类型

Manager 支持创建多种常用的数据结构和同步原语,包括但不限于:

  • 基础数据结构:listdictNamespace(类似对象的属性访问)、Value(单个值)、Array(数组)等。
  • 同步工具:Lock(锁)、RLock(可重入锁)、Semaphore(信号量)、Event(事件)等。
  • 其他:Queue(队列)、JoinableQueue(可等待的队列)等。

使用方法

使用 Manager 的基本步骤如下:

  1. 创建 Manager 实例(multiprocessing.Manager())。
  2. 通过 Manager 实例创建需要共享的对象(如 manager.list()manager.dict())。
  3. 在子进程中使用这些共享对象(通过函数参数传递)。
  4. 结束后,通常需要手动关闭 Manager(可选,进程退出时会自动关闭)。

示例代码

下面是一个简单示例,展示多个进程通过 Manager 共享一个列表,并对其进行修改:

复制代码
from multiprocessing import Process, Manager
import time

def add_item(shared_list, item):
    """向共享列表中添加元素"""
    time.sleep(0.1)  # 模拟耗时操作
    shared_list.append(item)
    print(f"进程 {item} 添加完成,当前列表:{shared_list}")

if __name__ == "__main__":
    # 创建 Manager 实例
    with Manager() as manager:
        # 创建共享列表
        shared_list = manager.list()
        
        # 创建 3 个子进程,分别向共享列表添加元素
        processes = []
        for i in range(3):
            p = Process(target=add_item, args=(shared_list, i))
            processes.append(p)
            p.start()
        
        # 等待所有子进程完成
        for p in processes:
            p.join()
        
        # 打印最终结果
        print(f"最终共享列表:{shared_list}")

输出(顺序可能因进程调度略有不同

plain 复制代码
`进程 0 添加完成,当前列表:[0]
进程 1 添加完成,当前列表:[0, 1]
进程 2 添加完成,当前列表:[0, 1, 2]
最终共享列表:[0, 1, 2]
`

优缺点分析

  • 优点

  • 支持多种复杂数据结构(如 dictlist),使用方式与普通对象一致,易于理解。

  • 无需手动处理底层的进程同步细节(内部已实现基本同步)。

  • 可用于跨机器的进程共享(通过网络连接远程 Manager)。

  • 缺点

  • 由于依赖服务器进程中转,性能比基于共享内存的方式(如 multiprocessing.Valuemultiprocessing.Array)稍低,适合数据量不大或交互不频繁的场景。

  • 共享对象的操作需要通过网络通信,可能引入一定延迟。

注意事项

  1. 同步问题 :虽然 Manager 内部实现了基本同步,但多进程同时修改复杂对象(如嵌套字典)时,仍可能出现数据不一致,需手动添加锁(如 manager.Lock())。
  2. 可序列化 :通过 Manager 传递的对象需要支持序列化(pickle),否则可能报错。
  3. 资源释放 :使用 with 语句管理 Manager 可自动释放资源,避免泄露。

总之,Manager 是多进程间共享数据的便捷工具,尤其适合需要共享复杂数据结构且对性能要求不极致的场景。

相关推荐
翼龙云_cloud2 小时前
阿里云渠道商:如何在NAS控制台创建通用型NAS NFS协议文件系统?
运维·服务器·阿里云·云计算
赖small强3 小时前
【Linux C/C++开发】第16章:多线程编程基础
linux·c语言·c++·多线程编程·进程和线程的本质区别
haofafa3 小时前
Docker极简入门实战大纲
运维·docker·容器
朕要睡了3 小时前
aws-sdk-cpp编译
linux·运维·服务器
q***31833 小时前
Nginx搭建负载均衡
运维·nginx·负载均衡
刘国华-平价IT运维课堂3 小时前
红帽企业Linux 10.1发布:AI命令行助手、量子安全加密和混合云创新
linux·运维·服务器·人工智能·云计算
qq_479875433 小时前
bash Buffering
linux
孪生质数-3 小时前
Ansible基础入门
服务器·自动化·ansible·openstack
生活爱好者!4 小时前
效率高!开源协作 Wiki 与文档管理平台 NAS一键部署docmost
运维·网络·docker·容器·开源
间彧4 小时前
tail 、journalctl 、 docker logs -f命令详解
linux