学习笔记二:发展历程

1. 机器学习的起步阶段(20世纪50-70年代)

  • 机器学习的发展是人工智能(AI)研究中的必经阶段。
  • 20世纪五十至七十年代,AI研究以"推理期"为主,着重推理推断,典型工作有A. Newell和H. Simon的"逻辑理论家"等。

2. "知识工程"时期(20世纪70-80年代初)

  • 1975年后,AI研究重心转向"知识工程",即通过专家系统构建知识库,但很快遇到"知识获取瓶颈"。
  • 典型代表人物有E. A. Feigenbaum等。

3. 机器学习理论体系的建立与发展(20世纪80年代至今)

  • 1980年起,学界重视机器学习理论,国际机器学习研讨会(IWML)成立,出现了相关书籍和期刊。
  • 机器学习被划分为三大主要范式:
    • 归纳学习(Inductive Learning):如决策树(decision tree)、归纳逻辑程序设计(ILP)等,重在由实例总结知识。
    • 基于符号学习(Symbolism):强调知识表达与推理,表现为符号操控和规则挖掘,代表如ILP。
    • 基于连接主义的学习(Connectionism):以神经网络为代表,致力于模拟人脑学习能力。如感知机(Perceptron)、BP神经网络等。

4. 统计学习与支持向量机的崛起(20世纪90年代至今)

  • 20世纪九十年代,出现统计学习(statistical learning),代表性方法有支持向量机(SVM)、核方法(kernel methods)等。
  • 统计学习理论为机器学习提供了严密的数学基础,代表为V. N. Vapnik提出的VC维理论。

5. 深度学习的兴起(21世纪初至今)

  • 进入21世纪,深度学习(deep learning)成为热点,尤其在语言、图像等复杂数据的学习中表现突出。
  • 深度学习方法实现了多层神经网络的训练,使得机器能自动提取更加复杂和抽象的特征。

6. 发展趋势与展望

  • 目前机器学习已成为人工智能领域的独立学科,各种学习方法百花齐放。
  • 发展过程中,机器学习不仅受到理论、算法的驱动,还受到硬件能力提升(如存储、计算能力)的推动。
  • 未来机器学习将与更多实际应用紧密结合,推动各行业智能化进步。
相关推荐
لا معنى له10 小时前
学习笔记:Transformer
人工智能·笔记·深度学习·学习·机器学习·transformer
~~李木子~~11 小时前
基于 MovieLens-100K 数据集的推荐算法设计与实现
算法·机器学习·推荐算法
Heyxy11 小时前
RobustMerge—— 无训练的 PEFT 模型融合方法,从低秩分解视角揭示方向鲁棒性对 PEFT 融合的作用
人工智能·深度学习·机器学习·大模型
Y_fulture12 小时前
datawhale组队学习:第一章习题
学习·机器学习·概率论
qq_4182478812 小时前
恒源云/autodl与pycharm远程连接
ide·人工智能·python·神经网络·机器学习·pycharm·图论
科学最TOP12 小时前
AAAI25|基于神经共形控制的时间序列预测模型
人工智能·深度学习·神经网络·机器学习·时间序列
这张生成的图像能检测吗13 小时前
Wonder3D: 跨域扩散的单图像3D重建技术
pytorch·深度学习·机器学习·计算机视觉·3d·三维重建·扩散模型
AI科技星13 小时前
质量定义方程的物理数学融合与求导验证
数据结构·人工智能·算法·机器学习·重构
wm104314 小时前
机器学习课程day01 机器学习概述
人工智能·机器学习
桓峰基因14 小时前
SCS 60.单细胞空间转录组空间聚类(SPATA2)
人工智能·算法·机器学习·数据挖掘·聚类