PyTorch2 Python深度学习 - 卷积神经网络(CNN)介绍实例 - 使用MNIST识别手写数字示例

锋哥原创的PyTorch2 Python深度学习视频教程:

https://www.bilibili.com/video/BV1eqxNzXEYc

课程介绍

​基于前面的机器学习Scikit-learn,深度学习Tensorflow2课程,我们继续讲解深度学习PyTorch2,所以有些机器学习,深度学习基本概念就不再重复讲解,大家务必学习好前面两个课程。本课程主要讲解基于PyTorch2的深度学习核心知识,主要讲解包括PyTorch2框架入门知识,环境搭建,张量,自动微分,数据加载与预处理,模型训练与优化,以及卷积神经网络(CNN),循环神经网络(RNN),生成对抗网络(GAN),模型保存与加载等。

PyTorch2 Python深度学习 - 卷积神经网络(CNN)介绍实例 - 使用MNIST识别手写数字示例

MNIST(Modified National Institute of Standards and Technology)数据集是一个常用于机器学习和深度学习领域的经典数据集,特别是在图像识别任务中。它由美国国家标准与技术研究院(NIST)提供,广泛用于手写数字识别的研究和算法测试。

主要特点:

  1. 数据内容:

    • MNIST数据集包含了28x28像素的灰度图像,表示从0到9的手写数字。每个图像展示了一个单一的手写数字(0到9之一)。

    • 数据集分为两个部分:

      • 训练集:包含60,000个样本,用于训练模型。

      • 测试集:包含10,000个样本,用于测试和评估模型的性能。

  2. 标签信息:

    • 每个图像都有一个对应的标签,表示图像中手写数字的真实值(即0到9之间的某个数字)。
  3. 数据预处理:

    • 图像的大小是28x28像素,灰度级别为0到255,其中0表示白色,255表示黑色。图像通常在输入神经网络之前会被标准化或者归一化。
  4. 应用领域:

    • 手写数字识别:这是MINIST数据集的经典应用,用于测试各种机器学习算法的性能。

    • 分类问题:可以用于对比不同模型(如支持向量机、神经网络、决策树等)的分类准确性。

下面是具体示例:

复制代码
import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from torchvision import transforms, datasets
​
# 1,数据预处理和加载
transform = transforms.Compose([
    transforms.ToTensor(),  # 将图片转换为Tensor
    transforms.Normalize((0.5,), (0.5,))  # 数据归一化
])
​
trainset = datasets.MNIST(
    root='data',
    train=True,
    download=True,
    transform=transform
)
testset = datasets.MNIST(
    root='data',
    train=False,
    download=True,
    transform=transform
)
​
trainloader = DataLoader(trainset, batch_size=64, shuffle=True)
testloader = DataLoader(testset, batch_size=64, shuffle=False)
​
# 2,定义模型
model = nn.Sequential(
    # 第一层卷积层,输入1通道,输出32通道,卷积核大小3x3,填充1,
    nn.Conv2d(1, 32, kernel_size=3, padding=1),
    nn.ReLU(),  # 激活函数ReLU
    nn.MaxPool2d(2, 2),  # 池化层,池化核大小2x2,步长2
​
    # 第二层卷积层,输入32通道,输出64通道,卷积核大小3x3,填充1,
    nn.Conv2d(32, 64, kernel_size=3, padding=1),
    nn.ReLU(),  # 激活函数ReLU
    nn.MaxPool2d(2, 2),  # 池化层,池化核大小2x2,步长2
​
    # 展平操作,将数据从二维转为一维
    nn.Flatten(),
​
    # 第一个全连接层,输入64*7*7,输出128
    nn.Linear(64 * 7 * 7, 128),
    nn.ReLU(),
​
    # 第二个全连接层,输出10个分类(数字0-9)
    nn.Linear(128, 10)
)
​
# 3, 定义损失函数与优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # 优化器,Adam优化算法
​
# 4,训练模型
epochs = 5
model.train()  # 训练模式
for epoch in range(epochs):
    for images, labels in trainloader:
        # 前向传播
        outputs = model(images)
        loss = criterion(outputs, labels)  # 计算损失
​
        # 反向传播和优化
        optimizer.zero_grad()  # 清空梯度
        loss.backward()  # 反向传播
        optimizer.step()  # 更新参数
​
        print(f'Epoch [{epoch + 1}/{epochs}],  Loss: {loss.item():.4f}')
​
# 5, 测试模型
model.eval()  # 测试模式
correct = 0
total = 0
with torch.no_grad():  # 禁用梯度计算
    for images, labels in testloader:
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)  # 获取预测结果
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
print(f'Accuracy: {100 * correct / total:.2f}%')

运行输出:

相关推荐
幻云20103 分钟前
Next.js之道:从入门到精通
人工智能·python
0和1的舞者5 分钟前
GUI自动化测试详解(三):测试框架pytest完全指南
自动化测试·python·测试开发·自动化·pytest·测试
llddycidy9 分钟前
峰值需求预测中的机器学习:基础、趋势和见解(最新文献)
网络·人工智能·深度学习
大神君Bob20 分钟前
【AI办公自动化】教你使用Pytho让Word文档处理自动化
python
轻竹办公PPT27 分钟前
2025实测!AI生成PPT工具全总结
人工智能·python·powerpoint
彼岸花开了吗28 分钟前
构建AI智能体:八十一、SVD模型压缩的艺术:如何科学选择K值实现最佳性能
人工智能·python·llm
AI小怪兽36 分钟前
轻量、实时、高精度!MIE-YOLO:面向精准农业的多尺度杂草检测新框架 | MDPI AgriEngineering 2026
开发语言·人工智能·深度学习·yolo·无人机
一招定胜负1 小时前
图像形态学+边缘检测及CNN关联
人工智能·深度学习·cnn
dagouaofei1 小时前
2026 年工作计划 PPT 制作方式对比:AI 与传统方法差异
人工智能·python·powerpoint
虚拟搬运工1 小时前
xformers造成comfyu启动失败
python·comfyui