解析平面卷积/pytorch的nn.Conv2d的计算步骤,in_channels与out_channels如何计算而来

关于二维图像卷积详细过程/pytorch-nn.Conv2d方法

python 复制代码
nn.Conv2d(
  in_channels=inChannel, 
  out_channels=outChannel, 
  kernel_size=kernelSize, 
  stride=stride, 
  padding=padding,
)

具体详细步骤如图

详细说明

  1. 定义outChannel个卷积块,每个卷积块有inChannel个卷积核,所以一共 inChannel * outChannel个卷积核
  2. 输入块的每个通道与卷积核卷积,由此一来,每个卷积块得到一个中间块,共outChannel个块
  3. 每个中间块通道相加,每个中间块压缩成一个平面,共outChannel个平面
  4. 平面叠加起来,成一个输出块,所以输出块的通道为outChannel

其中各方法含义

  • 通道相加 就像把一本书压成一张纸,每个数都相加
  • 通道堆叠 把通道相加后的纸订成一本书,通道合并起来
相关推荐
robot_learner1 分钟前
11 月 AI 动态:多模态突破・智能体模型・开源浪潮・机器人仿真・AI 安全与主权 AI
人工智能·机器人·开源
Mintopia29 分钟前
🌐 动态网络环境中 WebAIGC 的断点续传与容错技术
人工智能·aigc·trae
后端小张31 分钟前
【AI 学习】从0到1深入理解Agent AI智能体:理论与实践融合指南
人工智能·学习·搜索引擎·ai·agent·agi·ai agent
Mintopia32 分钟前
🧩 Claude Code Hooks 最佳实践指南
人工智能·claude·全栈
【建模先锋】36 分钟前
精品数据分享 | 锂电池数据集(四)PINN+锂离子电池退化稳定性建模和预测
深度学习·预测模型·pinn·锂电池剩余寿命预测·锂电池数据集·剩余寿命
星空的资源小屋41 分钟前
极速精准!XSearch本地文件搜索神器
javascript·人工智能·django·电脑
九年义务漏网鲨鱼42 分钟前
【大模型学习】现代大模型架构(二):旋转位置编码和SwiGLU
深度学习·学习·大模型·智能体
CoovallyAIHub1 小时前
破局红外小目标检测:异常感知Anomaly-Aware YOLO以“俭”驭“繁”
深度学习·算法·计算机视觉
mqiqe1 小时前
【Spring AI MCP】六、SpringAI MCP 服务端 STDIO & SSE
java·人工智能·spring
飞哥数智坊1 小时前
两天一首歌,这个UP主是怎么做到的?
人工智能·aigc