计算机视觉·TagCLIP

TagCLIP

Abstract---Contrastive Language-Image Pre-training (CLIP) has recently shown great promise in pixel-level zero-shot learning tasks. However, existing approaches utilizing CLIP's text and patch embeddings to generate semantic masks often misidentify input pixels from unseen classes, leading to confusion between novel classes and semantically similar ones. In this work, we propose a novel approach, TagCLIP (Trusty-aware guided CLIP), to address this issue. We disentangle the ill-posed optimization problem into two parallel processes: semantic matching performed individually and reliability judgment for improving discrimination ability. Building on the idea of special tokens in language modeling representing sentence-level embeddings, we introduce a trusty token that enables distinguishing novel classes from known ones in prediction. To evaluate our approach, we conduct experiments on two benchmark datasets, PASCAL VOC 2012 and COCO-Stuff 164 K. Our results show that TagCLIP improves the Intersection over Union (IoU) of unseen classes by 7.4% and 1.7%, respectively, with negligible overheads. The code is available at here.

动机

过去的工作总是将不可见类错误分类为相似类(应该指的是可见类)

  • 引入一个额外的token tCt_CtC

可信token学习器:就是一个自注意力机制。

  • 分为两个MAM_AMA和MRM_RMR,MRM_RMR用于减少对于不可见类的概率。

  • 可见类为1,不可见类为0

  • 损失函数:就是一个Dice损失

推理

  • 减少可见类的预测概率
  • 适当调整概率

消融实验

  • 作者的消融实验还是比较丰富的。可以学习以下
相关推荐
hh随便起个名2 小时前
力扣二叉树的三种遍历
javascript·数据结构·算法·leetcode
小a杰.2 小时前
Flutter 与 AI 深度集成指南:从基础实现到高级应用
人工智能·flutter
colorknight2 小时前
数据编织-异构数据存储的自动化治理
数据仓库·人工智能·数据治理·数据湖·数据科学·数据编织·自动化治理
Lun3866buzha2 小时前
篮球场景目标检测与定位_YOLO11-RFPN实现详解
人工智能·目标检测·计算机视觉
janefir2 小时前
LangChain框架下DirectoryLoader使用报错zipfile.BadZipFile
人工智能·langchain
齐齐大魔王3 小时前
COCO 数据集
人工智能·机器学习
Dingdangcat863 小时前
城市交通多目标检测系统:YOLO11-MAN-FasterCGLU算法优化与实战应用_3
算法·目标检测·目标跟踪
tang&4 小时前
滑动窗口:双指针的优雅舞步,征服连续区间问题的利器
数据结构·算法·哈希算法·滑动窗口
拼命鼠鼠4 小时前
【算法】矩阵链乘法的动态规划算法
算法·矩阵·动态规划
AI营销实验室4 小时前
原圈科技AI CRM系统赋能销售新未来,行业应用与创新点评
人工智能·科技