计算机视觉·TagCLIP

TagCLIP

Abstract---Contrastive Language-Image Pre-training (CLIP) has recently shown great promise in pixel-level zero-shot learning tasks. However, existing approaches utilizing CLIP's text and patch embeddings to generate semantic masks often misidentify input pixels from unseen classes, leading to confusion between novel classes and semantically similar ones. In this work, we propose a novel approach, TagCLIP (Trusty-aware guided CLIP), to address this issue. We disentangle the ill-posed optimization problem into two parallel processes: semantic matching performed individually and reliability judgment for improving discrimination ability. Building on the idea of special tokens in language modeling representing sentence-level embeddings, we introduce a trusty token that enables distinguishing novel classes from known ones in prediction. To evaluate our approach, we conduct experiments on two benchmark datasets, PASCAL VOC 2012 and COCO-Stuff 164 K. Our results show that TagCLIP improves the Intersection over Union (IoU) of unseen classes by 7.4% and 1.7%, respectively, with negligible overheads. The code is available at here.

动机

过去的工作总是将不可见类错误分类为相似类(应该指的是可见类)

  • 引入一个额外的token tCt_CtC

可信token学习器:就是一个自注意力机制。

  • 分为两个MAM_AMA和MRM_RMR,MRM_RMR用于减少对于不可见类的概率。

  • 可见类为1,不可见类为0

  • 损失函数:就是一个Dice损失

推理

  • 减少可见类的预测概率
  • 适当调整概率

消融实验

  • 作者的消融实验还是比较丰富的。可以学习以下
相关推荐
做怪小疯子11 小时前
LeetCode 热题 100——矩阵——旋转图像
算法·leetcode·矩阵
努力学习的小廉11 小时前
我爱学算法之—— BFS之最短路径问题
算法·宽度优先
杭州泽沃电子科技有限公司11 小时前
在线监测:为医药精细化工奠定安全、合规与质量基石
运维·人工智能·物联网·安全·智能监测
高山上有一只小老虎11 小时前
构造A+B
java·算法
GIS数据转换器11 小时前
GIS+大模型助力安全风险精细化管理
大数据·网络·人工智能·安全·无人机
木头左11 小时前
缺失值插补策略比较线性回归vs.相邻填充在LSTM输入层的性能差异分析
算法·线性回归·lstm
OJAC11112 小时前
AI跨界潮:金融精英与应届生正涌入人工智能领域
人工智能·金融
sin_hielo12 小时前
leetcode 2435
数据结构·算法·leetcode
机器之心12 小时前
Adam的稳+Muon的快?华为诺亚开源ROOT破解大模型训练「既要又要」的两难困境
人工智能·openai
可观测性用观测云12 小时前
观测云 MCP Server 接入和使用最佳实践
人工智能