计算机视觉·TagCLIP

TagCLIP

Abstract---Contrastive Language-Image Pre-training (CLIP) has recently shown great promise in pixel-level zero-shot learning tasks. However, existing approaches utilizing CLIP's text and patch embeddings to generate semantic masks often misidentify input pixels from unseen classes, leading to confusion between novel classes and semantically similar ones. In this work, we propose a novel approach, TagCLIP (Trusty-aware guided CLIP), to address this issue. We disentangle the ill-posed optimization problem into two parallel processes: semantic matching performed individually and reliability judgment for improving discrimination ability. Building on the idea of special tokens in language modeling representing sentence-level embeddings, we introduce a trusty token that enables distinguishing novel classes from known ones in prediction. To evaluate our approach, we conduct experiments on two benchmark datasets, PASCAL VOC 2012 and COCO-Stuff 164 K. Our results show that TagCLIP improves the Intersection over Union (IoU) of unseen classes by 7.4% and 1.7%, respectively, with negligible overheads. The code is available at here.

动机

过去的工作总是将不可见类错误分类为相似类(应该指的是可见类)

  • 引入一个额外的token tCt_CtC

可信token学习器:就是一个自注意力机制。

  • 分为两个MAM_AMA和MRM_RMR,MRM_RMR用于减少对于不可见类的概率。

  • 可见类为1,不可见类为0

  • 损失函数:就是一个Dice损失

推理

  • 减少可见类的预测概率
  • 适当调整概率

消融实验

  • 作者的消融实验还是比较丰富的。可以学习以下
相关推荐
aneasystone本尊2 小时前
重温 Java 21 之虚拟线程
人工智能
千弥霜2 小时前
codeforces1997(div.3)E F
算法
geneculture2 小时前
官学商大跨界 · 产学研大综合:融智学新范式应用体系
大数据·人工智能·物联网·数据挖掘·哲学与科学统一性·信息融智学
这张生成的图像能检测吗2 小时前
(综述)基于深度学习的制造业表面缺陷检测图像合成方法综述
人工智能·计算机视觉·图像生成·工业检测·计算机图像学
草莓熊Lotso2 小时前
C++ 继承特殊场景解析:友元、静态成员与菱形继承的底层逻辑
服务器·开发语言·c++·人工智能·经验分享·笔记·1024程序员节
安如衫2 小时前
【学习笔记更新中】Deeplearning.AI 大语言模型后训练:微调与强化学习导论
人工智能·llm·sft·后训练·deepseek
IT_陈寒2 小时前
5个Python 3.12新特性让你的代码效率提升50%,第3个太实用了!
前端·人工智能·后端
love is sour2 小时前
理解全连接层:深度学习中的基础构建块
人工智能·深度学习
周杰伦_Jay2 小时前
【Python后端API开发对比】FastAPI、主流框架Flask、Django REST Framework(DRF)及高性能框架Tornado
数据结构·人工智能·python·django·flask·fastapi·tornado