计算机视觉·TagCLIP

TagCLIP

Abstract---Contrastive Language-Image Pre-training (CLIP) has recently shown great promise in pixel-level zero-shot learning tasks. However, existing approaches utilizing CLIP's text and patch embeddings to generate semantic masks often misidentify input pixels from unseen classes, leading to confusion between novel classes and semantically similar ones. In this work, we propose a novel approach, TagCLIP (Trusty-aware guided CLIP), to address this issue. We disentangle the ill-posed optimization problem into two parallel processes: semantic matching performed individually and reliability judgment for improving discrimination ability. Building on the idea of special tokens in language modeling representing sentence-level embeddings, we introduce a trusty token that enables distinguishing novel classes from known ones in prediction. To evaluate our approach, we conduct experiments on two benchmark datasets, PASCAL VOC 2012 and COCO-Stuff 164 K. Our results show that TagCLIP improves the Intersection over Union (IoU) of unseen classes by 7.4% and 1.7%, respectively, with negligible overheads. The code is available at here.

动机

过去的工作总是将不可见类错误分类为相似类(应该指的是可见类)

  • 引入一个额外的token tCt_CtC

可信token学习器:就是一个自注意力机制。

  • 分为两个MAM_AMA和MRM_RMR,MRM_RMR用于减少对于不可见类的概率。

  • 可见类为1,不可见类为0

  • 损失函数:就是一个Dice损失

推理

  • 减少可见类的预测概率
  • 适当调整概率

消融实验

  • 作者的消融实验还是比较丰富的。可以学习以下
相关推荐
小鸡吃米…12 分钟前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫1 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)1 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan1 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维1 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS1 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd1 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
独自破碎E2 小时前
【二分法】寻找峰值
算法
mit6.8242 小时前
位运算|拆分贪心
算法
水如烟2 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能