2025年TRE SCI1区TOP,随机环境下无人机应急医疗接送与配送的先进混合方法,深度解析+性能实测

目录


1.摘要

论文提出了一种优化紧急医疗运输的混合方法,结合无人机(UAV)进行接送与配送。模型考虑了随机需求和飞行环境的不确定性,解决了库存短缺、突发需求和地理障碍等问题。首先,构建了一个基于混合整数线性规划的医疗接送模型(HPDUP),然后扩展为考虑随机环境的HPDU-SEP模型。为优化无人机轨迹,提出了结合Q-learning的自适应大邻域搜索(ALNS-QLTP)方法,通过地理信息和反馈参数提升优化效率。实验表明,ALNS-QLTP在大规模不确定环境中能显著提高轨迹优化效果,保证了较高的患者覆盖率。

2.问题描述

论文提出了一种基于无人机的紧急医疗物流优化方法(HPDU-SEP),通过混合整数线性规划(MILP)和样本平均近似(SAA)模型,处理随机需求和飞行距离的不确定性。在该模型中,医疗任务被分配到不同的无人机,考虑了飞行路径、时间窗、载重能力等约束,并应对地理障碍和不确定因素的影响。目标是最大化医疗任务的加权覆盖率,并降低由于不确定性带来的惩罚。

在紧急情况下,由于无法准确及时地检测所有临时障碍物和预测需求,HPDU-SEP成为一个随机规划问题,传统方法难以求解。为此,本文采用样本平均近似(SAA)方法,通过多个随机样本估计期望目标函数,进而获取候选解并计算其最优性间隙。对于不确定的飞行距离,考虑到多种不确定障碍物的影响,每种情境下的障碍物概率不同,飞行时间可能延迟。延迟部分超过服务结束时间的部分将产生回溯惩罚,从覆盖目标中扣除。对于需求的不确定性,假设每个任务的需求波动遵循正态分布,且每个情境下的需求变化可引入回溯惩罚。

3.ALNS-QLTP算法

ALNS-QLTP算法结合Q-learning优化无人机飞行轨迹,通过离线学习和实时反馈不断提升轨迹生成效率。算法通过不确定需求和障碍的概率分布生成样本情境,随机生成初始解,并通过移除和插入操作进行迭代优化,最终输出最优解。

飞行路径受随机障碍物的影响,障碍物的出现概率通过随机数生成确定,进而影响最短距离计算。Q-learning通过动态决策和实时反馈优化轨迹,生成的Q表格用于指导最优路径规划,确保应对不确定障碍环境,提升物流服务的效率和稳定性。

4.结果展示

5.参考文献

1\] Lin Z, Demir E, Xu X, et al. An advanced hybrid approach for emergency healthcare pickup and delivery with unmanned aerial vehicles under a stochastic environment\[J\]. Transportation Research Part E: Logistics and Transportation Review, 2025, 204: 104395. ### 6.代码获取 xx ### 7.算法辅导·应用定制·读者交流 xx

相关推荐
小白程序员成长日记2 小时前
2025.11.06 力扣每日一题
算法·leetcode
暴风鱼划水3 小时前
算法题(Python)数组篇 | 4.长度最小的子数组
python·算法·力扣
gugugu.3 小时前
算法:二分算法类型题目总结---(含二分模版)
算法
大G的笔记本3 小时前
算法篇常见面试题清单
java·算法·排序算法
7澄13 小时前
深入解析 LeetCode 数组经典问题:删除每行中的最大值与找出峰值
java·开发语言·算法·leetcode·intellij idea
AI科技星3 小时前
宇宙的几何诗篇:当空间本身成为运动的主角
数据结构·人工智能·经验分享·算法·计算机视觉
前端小L3 小时前
二分查找专题(二):lower_bound 的首秀——精解「搜索插入位置」
数据结构·算法
老黄编程4 小时前
三维空间圆柱方程
算法·几何
xier_ran5 小时前
关键词解释:DAG 系统(Directed Acyclic Graph,有向无环图)
python·算法