如何在k8s中配置并使用nvidia显卡

0. 安装驱动依赖

0.1 安装cuda

sh 复制代码
# 参考https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=22.04&target_type=deb_network
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get -y install cuda-toolkit-13-0

0.2 安装驱动

sh 复制代码
# 参考https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=22.04&target_type=deb_network
sudo apt-get install -y cuda-drivers

1. 安装 nvidia container toolkit

sh 复制代码
# 参考:https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
sudo apt-get update && sudo apt-get install -y --no-install-recommends \
   curl \
   gnupg2
   
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
  && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
    sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
    sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
    
sudo sed -i -e '/experimental/ s/^#//g' /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
export NVIDIA_CONTAINER_TOOLKIT_VERSION=1.18.0-1
  sudo apt-get install -y \
      nvidia-container-toolkit=${NVIDIA_CONTAINER_TOOLKIT_VERSION} \
      nvidia-container-toolkit-base=${NVIDIA_CONTAINER_TOOLKIT_VERSION} \
      libnvidia-container-tools=${NVIDIA_CONTAINER_TOOLKIT_VERSION} \
      libnvidia-container1=${NVIDIA_CONTAINER_TOOLKIT_VERSION}

重启container

sh 复制代码
sudo nvidia-ctk runtime configure --runtime=containerd
# 默认情况下,该nvidia-ctk命令会创建一个/etc/containerd/conf.d/99-nvidia.toml 临时配置文件,并修改(或创建)该/etc/containerd/config.toml文件以确保imports配置选项得到相应更新。该临时配置文件确保 containerd 可以使用 NVIDIA 容器运行时。
sudo systemctl restart containerd

2. 配置nvidia k8s插件

参考:https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html

2.1 创建RuntimeClass

需要在nvidia-device-plugin.yml中调用

yaml 复制代码
cat <<EOF | kubectl create -f -
apiVersion: node.k8s.io/v1
kind: RuntimeClass
metadata:
  name: nvidia
handler: nvidia
EOF

或者

sh 复制代码
sudo nvidia-ctk runtime configure --runtime=containerd --nvidia-set-as-default # 默认使用 nvidia runtime
sudo systemctl restart containerd

2.2 创建 nvidia-device-plugin

方式一:

sh 复制代码
# 注意:需默认使用 nvidia runtime, nvidia-ctk runtime configure --runtime=containerd --nvidia-set-as-default
kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v0.17.1/deployments/static/nvidia-device-plugin.yml

方式二:

sh 复制代码
# 获取yaml文件
wget https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v0.17.1/deployments/static/nvidia-device-plugin.yml

# 在yaml文件中加入字段:runtimeClassName: nvidia
如:
apiVersion: apps/v1
kind: DaemonSet
...
spec:
  selector:
    matchLabels:
      name: nvidia-device-plugin-ds
    spec:
      tolerations:
      - key: nvidia.com/gpu
        operator: Exists
...
      # See https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/
      priorityClassName: "system-node-critical"
      runtimeClassName: nvidia     ## 添加到这里
      containers:
      - image: nvcr.io/nvidia/k8s-device-plugin:v0.17.1
        name: nvidia-device-plugin-ctr

执行

sh 复制代码
kubectl create -f nvidia-device-plugin.yml

3. 验证

sh 复制代码
# 1. 查看nvidia-device-plugin pod
kubectl describe pod nvidia-device-plugin-daemonset-sm24n -n kube-system
结果:
Name:                 nvidia-device-plugin-daemonset-sm24n
Namespace:            kube-system
Priority:             2000001000
Priority Class Name:  system-node-critical
Runtime Class Name:   nvidia
...
Events:
  Type    Reason     Age   From               Message
  ----    ------     ----  ----               -------
  Normal  Scheduled  27s   default-scheduler  Successfully assigned kube-system/nvidia-device-plugin-daemonset-sm24n to master
  Normal  Pulled     26s   kubelet            Container image "nvcr.io/nvidia/k8s-device-plugin:v0.17.1" already present on machine
  Normal  Created    26s   kubelet            Created container nvidia-device-plugin-ctr
  Normal  Started    26s   kubelet            Started container nvidia-device-plugin-ctr


# 2. 查看node 中是否已经有了nvida 的resource
kubectl describe node master
结果:
Name:               master
Roles:              control-plane
Labels:             beta.kubernetes.io/arch=amd64
                    beta.kubernetes.io/os=linux
                    feature.node.kubernetes.io/cpu-cpuid.ADX=true
                    feature.node.kubernetes.io/cpu-cpuid.AESNI=true
                    feature.node.kubernetes.io/cpu-cpuid.AVX=true
                    feature.node.kubernetes.io/cpu-cpuid.AVX2=true
....
Allocated resources:
  (Total limits may be over 100 percent, i.e., overcommitted.)
  Resource           Requests     Limits
  --------           --------     ------
  cpu                2100m (6%)   1900m (5%)
  memory             3088Mi (9%)  8696Mi (27%)
  ephemeral-storage  0 (0%)       0 (0%)
  hugepages-1Gi      0 (0%)       0 (0%)
  hugepages-2Mi      0 (0%)       0 (0%)
  nvidia.com/gpu     0            0             # nvidia 信息
  
# 3. 如果gpu可用,通过官方测试脚本加载gpu
cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
  name: gpu-pod
spec:
  restartPolicy: Never
  containers:
    - name: cuda-container
      image: nvcr.io/nvidia/k8s/cuda-sample:vectoradd-cuda12.5.0
      resources:
        limits:
          nvidia.com/gpu: 1 # requesting 1 GPU
  tolerations:
  - key: nvidia.com/gpu
    operator: Exists
    effect: NoSchedule
EOF

# 通过 logs查看结果
kubectl logs gpu-pod
[Vector addition of 50000 elements]
Copy input data from the host memory to the CUDA device
CUDA kernel launch with 196 blocks of 256 threads
Copy output data from the CUDA device to the host memory
Test PASSED
Done

4. 常见问题

nvidia-device-plugin未发现可用gpu

nvidia-device-plugin 的pod describeti提示没有发现可以gpu

在驱动、runtime都正确安全的情况下一般是,运行时的问题

通过创建RuntimeClass或者在nvidia-ctk 中添加--nvidia-set-as-default解决,参考第2步。

gpu-pod报错问题

sh 复制代码
kubectl logs gpu-pod
Failed to allocate device vector A (error code CUDA driver version is insufficient for CUDA runtime version)!
[Vector addition of 50000 elements]

版本问题:cuda-sample:vectoradd-cuda12.5.0

相关推荐
Kendra9195 小时前
Kubernetes 常用命令
云原生·容器·kubernetes
Rabbit_QL5 小时前
【网络设置】Docker 自定义网络深度解析:从踩坑到工程实践
网络·docker·容器
沫离痕11 小时前
windows安装docker实例
windows·docker·容器
没有bug.的程序员11 小时前
Service Mesh 与 Spring Cloud 共存方案:双体系治理、平滑迁移与风险控制实战指南
云原生·springcloud·流量治理·混合架构·servicemesh·微服务迁移·技术演进
一只鱼丸yo11 小时前
从单体到微服务:一次真实迁移实战
微服务·云原生·架构
唯情于酒13 小时前
Docker部署若依(前后端分离版)
vue.js·docker·容器
2501_9399090513 小时前
k8s基础与安装部署
云原生·容器·kubernetes
谷隐凡二14 小时前
Kubernetes Route控制器简单介绍
java·容器·kubernetes
ysy164806723915 小时前
Docker安装(Windows版)
windows·docker·容器
2501_9404140815 小时前
搞了一次平台工程,我把本地的 Docker Desktop 彻底卸了
运维·docker·容器