如何在k8s中配置并使用nvidia显卡

0. 安装驱动依赖

0.1 安装cuda

sh 复制代码
# 参考https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=22.04&target_type=deb_network
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get -y install cuda-toolkit-13-0

0.2 安装驱动

sh 复制代码
# 参考https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=22.04&target_type=deb_network
sudo apt-get install -y cuda-drivers

1. 安装 nvidia container toolkit

sh 复制代码
# 参考:https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
sudo apt-get update && sudo apt-get install -y --no-install-recommends \
   curl \
   gnupg2
   
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
  && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
    sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
    sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
    
sudo sed -i -e '/experimental/ s/^#//g' /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
export NVIDIA_CONTAINER_TOOLKIT_VERSION=1.18.0-1
  sudo apt-get install -y \
      nvidia-container-toolkit=${NVIDIA_CONTAINER_TOOLKIT_VERSION} \
      nvidia-container-toolkit-base=${NVIDIA_CONTAINER_TOOLKIT_VERSION} \
      libnvidia-container-tools=${NVIDIA_CONTAINER_TOOLKIT_VERSION} \
      libnvidia-container1=${NVIDIA_CONTAINER_TOOLKIT_VERSION}

重启container

sh 复制代码
sudo nvidia-ctk runtime configure --runtime=containerd
# 默认情况下,该nvidia-ctk命令会创建一个/etc/containerd/conf.d/99-nvidia.toml 临时配置文件,并修改(或创建)该/etc/containerd/config.toml文件以确保imports配置选项得到相应更新。该临时配置文件确保 containerd 可以使用 NVIDIA 容器运行时。
sudo systemctl restart containerd

2. 配置nvidia k8s插件

参考:https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html

2.1 创建RuntimeClass

需要在nvidia-device-plugin.yml中调用

yaml 复制代码
cat <<EOF | kubectl create -f -
apiVersion: node.k8s.io/v1
kind: RuntimeClass
metadata:
  name: nvidia
handler: nvidia
EOF

或者

sh 复制代码
sudo nvidia-ctk runtime configure --runtime=containerd --nvidia-set-as-default # 默认使用 nvidia runtime
sudo systemctl restart containerd

2.2 创建 nvidia-device-plugin

方式一:

sh 复制代码
# 注意:需默认使用 nvidia runtime, nvidia-ctk runtime configure --runtime=containerd --nvidia-set-as-default
kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v0.17.1/deployments/static/nvidia-device-plugin.yml

方式二:

sh 复制代码
# 获取yaml文件
wget https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v0.17.1/deployments/static/nvidia-device-plugin.yml

# 在yaml文件中加入字段:runtimeClassName: nvidia
如:
apiVersion: apps/v1
kind: DaemonSet
...
spec:
  selector:
    matchLabels:
      name: nvidia-device-plugin-ds
    spec:
      tolerations:
      - key: nvidia.com/gpu
        operator: Exists
...
      # See https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/
      priorityClassName: "system-node-critical"
      runtimeClassName: nvidia     ## 添加到这里
      containers:
      - image: nvcr.io/nvidia/k8s-device-plugin:v0.17.1
        name: nvidia-device-plugin-ctr

执行

sh 复制代码
kubectl create -f nvidia-device-plugin.yml

3. 验证

sh 复制代码
# 1. 查看nvidia-device-plugin pod
kubectl describe pod nvidia-device-plugin-daemonset-sm24n -n kube-system
结果:
Name:                 nvidia-device-plugin-daemonset-sm24n
Namespace:            kube-system
Priority:             2000001000
Priority Class Name:  system-node-critical
Runtime Class Name:   nvidia
...
Events:
  Type    Reason     Age   From               Message
  ----    ------     ----  ----               -------
  Normal  Scheduled  27s   default-scheduler  Successfully assigned kube-system/nvidia-device-plugin-daemonset-sm24n to master
  Normal  Pulled     26s   kubelet            Container image "nvcr.io/nvidia/k8s-device-plugin:v0.17.1" already present on machine
  Normal  Created    26s   kubelet            Created container nvidia-device-plugin-ctr
  Normal  Started    26s   kubelet            Started container nvidia-device-plugin-ctr


# 2. 查看node 中是否已经有了nvida 的resource
kubectl describe node master
结果:
Name:               master
Roles:              control-plane
Labels:             beta.kubernetes.io/arch=amd64
                    beta.kubernetes.io/os=linux
                    feature.node.kubernetes.io/cpu-cpuid.ADX=true
                    feature.node.kubernetes.io/cpu-cpuid.AESNI=true
                    feature.node.kubernetes.io/cpu-cpuid.AVX=true
                    feature.node.kubernetes.io/cpu-cpuid.AVX2=true
....
Allocated resources:
  (Total limits may be over 100 percent, i.e., overcommitted.)
  Resource           Requests     Limits
  --------           --------     ------
  cpu                2100m (6%)   1900m (5%)
  memory             3088Mi (9%)  8696Mi (27%)
  ephemeral-storage  0 (0%)       0 (0%)
  hugepages-1Gi      0 (0%)       0 (0%)
  hugepages-2Mi      0 (0%)       0 (0%)
  nvidia.com/gpu     0            0             # nvidia 信息
  
# 3. 如果gpu可用,通过官方测试脚本加载gpu
cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
  name: gpu-pod
spec:
  restartPolicy: Never
  containers:
    - name: cuda-container
      image: nvcr.io/nvidia/k8s/cuda-sample:vectoradd-cuda12.5.0
      resources:
        limits:
          nvidia.com/gpu: 1 # requesting 1 GPU
  tolerations:
  - key: nvidia.com/gpu
    operator: Exists
    effect: NoSchedule
EOF

# 通过 logs查看结果
kubectl logs gpu-pod
[Vector addition of 50000 elements]
Copy input data from the host memory to the CUDA device
CUDA kernel launch with 196 blocks of 256 threads
Copy output data from the CUDA device to the host memory
Test PASSED
Done

4. 常见问题

nvidia-device-plugin未发现可用gpu

nvidia-device-plugin 的pod describeti提示没有发现可以gpu

在驱动、runtime都正确安全的情况下一般是,运行时的问题

通过创建RuntimeClass或者在nvidia-ctk 中添加--nvidia-set-as-default解决,参考第2步。

gpu-pod报错问题

sh 复制代码
kubectl logs gpu-pod
Failed to allocate device vector A (error code CUDA driver version is insufficient for CUDA runtime version)!
[Vector addition of 50000 elements]

版本问题:cuda-sample:vectoradd-cuda12.5.0

相关推荐
bloglin999997 小时前
启动容器报错ls: cannot access ‘/docker-entrypoint-initdb.d/‘: Operation not permitted
docker·容器·eureka
songjxin8 小时前
离线部署kubernetes v1.34.3
云原生·容器·kubernetes
yBmZlQzJ9 小时前
免费内网穿透-端口转发配置介绍
运维·经验分享·docker·容器·1024程序员节
JH30739 小时前
docker 新手入门:10分钟搞定基础使用
运维·docker·容器
阿里云云原生9 小时前
Android App 崩溃排查实战:如何利用 RUM 完整数据与符号化技术定位问题?
android·阿里云·云原生·rum
wuxia21189 小时前
minikube的安装
kubernetes·云计算
天河归来10 小时前
在本地windows电脑使用Docker搭建xinference环境
docker·语言模型·容器
算力魔方AIPC11 小时前
使用 Docker 一键部署 PaddleOCR-VL: 新手保姆级教程
运维·docker·容器
熊出没11 小时前
Kubernetes 实操命令大全
云原生·容器·kubernetes
阿里云云原生11 小时前
深度解析云监控 2.0 日志审计:统一采集、实体建模与告警溯源能力
阿里云·云原生·云监控·可观测