输入一个故事主题,使用大语言模型生成故事视频【视频中包含大模型生成的图片、故事内容,以及音频和字幕信息】

本项目可以输入一个故事主题,使用大语言模型生成故事视频,视频中包含大模型生成的图片、故事内容,以及音频和字幕信息。

项目后端技术栈为 python + fastapi 框架,前端为 react + antd + vite。

资源获取

关注我的CSDN博客

视频演示

▶️ 《兔子和小狐狸的故事》

▶️ 《大灰狼和小白兔的故事》

界面截图

使用说明

  1. 下载本项目
    git clone https://github.com/alecm20/story-flicks.git
  2. 设置模型信息

先切换到项目的 backend 目录下

cd backend

cp .env.example .env

text_provider="openai" # 文本生成模型的提供商,目前支持 openai和 aliyun、deepseek、ollama、siliconflow,阿里云文档:https://www.aliyun.com/product/bailian

image_provider="aliyun" # 图片生成模型的提供商,目前支持 openai和 aliyun、siliconflow

openai_base_url="https://api.openai.com/v1" # openai 的 baseUrl

aliyun_base_url="https://dashscope.aliyuncs.com/compatible-mode/v1" # 阿里云的 baseUrl

deepseek_base_url="https://api.deepseek.com/v1" # deepseek 的 baseUrl

ollama_base_url="http://localhost:11434/v1" # ollama 的 baseUrl

siliconflow_base_url="https://api.siliconflow.cn/v1" # siliconflow 的 baseUrl

openai_api_key= # openai 的 api key,可以只填一个

aliyun_api_key= # 阿里云百炼的 api key,可以只填一个

deepseek_api_key= # deepseek 的 api key,目前该 api_key 只支持文本生成

ollama_api_key= # 如果需要使用的话,请填写ollama,目前该 api_key 只支持文本生成,并且不能用参数量太小的模型,推荐qwen2.5:14b 或者更大的模型。

siliconflow_api_key= # siliconflow 的文本模型目前只支持兼容 OpenAI 格式的大模型,如:Qwen/Qwen2.5-7B-Instruct。图像模型只测试了:black-forest-labs/FLUX.1-dev

text_llm_model=gpt-4o # 如果 text_provider 设置为 openai,这里只能填 OpenAI 的模型,如:gpt-4o。如果设置了 aliyun,可以填阿里云的大模型,如:qwen-plus 或者 qwen-max。ollama 的模型不能使用体积太小的模型,否则无法输出正确的 json,可以使用如:qwen2.5:14b 或更大的模型。

image_llm_model=flux-dev # 如果 image_provider 设置为 openai,这里只能填 OpenAI 的模型,如:dall-e-3。如果设置了 aliyun,可以填阿里云的大模型,阿里云推荐使用:flux-dev,目前可以免费试用,具体参考:https://help.aliyun.com/zh/model-studio/getting-started/models#a1a9f05a675m4。

  1. 启动项目
    3.1 手动启动
    启动后端项目

先切换到项目根目录

cd backend

conda create -n story-flicks python=3.10 # 这里使用 conda,其他的虚拟环境创建方式也可以

conda activate story-flicks

pip install -r requirements.txt

uvicorn main:app --reload

如果项目成功,会有如下信息输出:

INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)

INFO: Started reloader process [78259] using StatReload

INFO: Started server process [78261]

INFO: Waiting for application startup.

INFO: Application startup complete.

启动前端项目

先切换到项目根目录

cd frontend

npm install

npm run dev

#启动成功之后打开:http://localhost:5173/

启动成功会输出如下信息:

VITE v6.0.7 ready in 199 ms

➜ Local: http://localhost:5173/

➜ Network: use --host to expose

➜ press h + enter to show help

3.2 通过docker启动

在项目根目录下,执行:

docker-compose up --build

成功之后打开前端项目:http://localhost:5173/

  1. 开始使用
    根据界面中的字段,选择文本生成模型提供商、图片生成模型提供商、文本模型、图片生成模型、视频语言、声音、故事主题、故事段落,然后点击生成,即可生成视频。根据填写的段落数量,生成图片,一个段落生成一张图片,设置的段落越多,生成视频的耗时也会更久。如果成功之后,视频会展示在前端页面中。
相关推荐
会飞的老朱3 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º5 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee7 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º8 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys8 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56788 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子8 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能8 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144879 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile9 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算