《A Bilateral CFAR Algorithm for Ship Detection in SAR Images》译读笔记

A Bilateral CFAR Algorithm for Ship Detection in SAR Images

摘要

本文提出了一种用于合成孔径雷达(SAR)图像中船舶检测的双边恒定误报率(CFAR)算法。与标准CFAR算法相比,所提算法通过结合SAR图像的强度分布和空间分布,可以减少SAR模糊(ambiguities)和海洋杂波的影响。空间分布与强度分布起着同等重要的作用。该空间分布是在舰船检测前,通过本文提出的一种新的核密度估计算法来估计的。在典型SAR图像上的实验结果表明,该算法是有效的。

1. 引言

合成孔径雷达(SAR)图像中的舰船检测是全球海洋环境与海上交通监控的一项重要应用[1_adaptive_sar, 2_Hierarchical_ship, 3_SAR_Imagery]。由于其具有恒定的虚警概率和自适应阈值,恒虚警率(CFAR)检测是用于SAR图像舰船检测的最广泛使用的算法之一 [3_SAR_Imagery, 4_ MLCC_and_CFAR]。然而,传统的CFAR检测旨在搜索比周围海域异常明亮的像素,而SAR模糊或海杂波也可能满足此条件。即便统计模型能够准确拟合真实数据,这也会导致虚警。因此,对于CFAR检测而言,统计模型仅考虑 intensity distribution 是不够的。然而时至今日,许多研究仍致力于提升强度分布的准确性[5_Statistical_modeling]

事实上,SAR图像中的一个像素有两个基本属性。一个是强度,另一个是空间性。SAR图像中船舶目标与海面的不同之处,不仅体现在强度域上,也体现在空间域上。舰船目标的明亮像素通常是连续的,集中在一个小区域内,而背景相对离散且不稳定。许多研究已经通过利用spatial特征来提高检测精度。然而,所有这些方法都是作为检测的补充判别方法,而非一种检测方法本身 [6_high_resolution, 7_Ship_Classification, 8_Radiometric_spatial]。SAR图像的空间分布也可以被用来检测舰船目标。在本文中,空间分布与强度分布扮演着同等重要的角色。

核密度估计(Kernel density estimation)是一种非参数密度估计模型[9_Kernel_Smoothing],它是一种能有效展示数据集结构的重要数据分析工具。

相关推荐
敏叔V5871 分钟前
AI智能体的工具学习进阶:零样本API理解与调用
人工智能·学习
徐小夕@趣谈前端10 分钟前
拒绝重复造轮子?我们偏偏花365天,用Vue3写了款AI协同的Word编辑器
人工智能·编辑器·word
阿里云大数据AI技术11 分钟前
全模态、多引擎、一体化,阿里云DLF3.0构建Data+AI驱动的智能湖仓平台
人工智能·阿里云·云计算
陈天伟教授11 分钟前
人工智能应用- 语言理解:05.大语言模型
人工智能·语言模型·自然语言处理
池央12 分钟前
CANN GE 深度解析:图编译器的核心优化策略、执行流调度与模型下沉技术原理
人工智能·ci/cd·自动化
七月稻草人15 分钟前
CANN ops-nn:AIGC底层神经网络算力的核心优化引擎
人工智能·神经网络·aigc·cann
种时光的人16 分钟前
CANN仓库核心解读:ops-nn打造AIGC模型的神经网络算子核心支撑
人工智能·神经网络·aigc
晚霞的不甘18 分钟前
守护智能边界:CANN 的 AI 安全机制深度解析
人工智能·安全·语言模型·自然语言处理·前端框架
谢璞19 分钟前
中国AI最疯狂的一周:50亿金元肉搏,争夺未来的突围之战
人工智能
池央20 分钟前
CANN 算子生态的深度演进:稀疏计算支持与 PyPTO 范式的抽象层级
运维·人工智能·信号处理