NEWBASIC 2.06.7 API 帮助与用户使用手册
一、概述
NEWBASIC 2.06.7 是下一代量子集成编程语言,集成了多模态量子学习、终身学习系统、量子神经符号学习和量子因果推理等前沿功能。本手册提供完整的API参考和使用指南。
二、快速入门
2.1 安装与启动
' 安装NEWBASIC量子环境
INSTALL NEWBASIC-Quantum-Toolkit
CONFIGURE Quantum-Hardware --simulator="ibmq_qasm_simulator"
' 启动NEWBASIC解释器
START NEWBASIC
' 显示欢迎信息
Welcome to NEWBASIC 2.06.7 - Quantum Integrated Programming Language
Quantum Neural Architecture Search | Quantum Reinforcement Learning
Quantum Generative Adversarial Networks | Quantum Transfer Learning
Quantum Attention Mechanisms | Quantum Graph Neural Networks
Quantum Meta-Learning | Quantum Multimodal Learning
Type 'help' for command list, 'examples' for tutorial examples.
2.2 第一个量子程序
' 创建量子电路
CREATE CIRCUIT HelloQuantum
QUBITS 2
H(0) ' 应用Hadamard门到量子比特0
CNOT(0, 1) ' 应用CNOT门,控制位0,目标位1
MEASURE ALL ' 测量所有量子比特
END CIRCUIT
' 执行量子电路
RUN HelloQuantum WITH SHOTS=1000
' 查看结果
PRINT RESULTS
' 输出: |00>: 498 |11>: 502
三、核心API参考
3.1 量子神经网络API
' 创建量子神经网络
API QuantumNeuralNetwork.Create(layers AS List(Of LayerDefinition)) AS QuantumNeuralNetwork
' 示例:创建量子分类器
DIM layers = NEW List(Of LayerDefinition)()
layers.Add(NEW LayerDefinition("Input", 4)) ' 4个输入特征
layers.Add(NEW LayerDefinition("QuantumDense", 8)) ' 8量子比特的全连接层
layers.Add(NEW LayerDefinition("QuantumDense", 4)) ' 4量子比特层
layers.Add(NEW LayerDefinition("Output", 3)) ' 3分类输出
DIM model = QuantumNeuralNetwork.Create(layers)
' 训练模型
API model.Train(data AS Dataset, epochs AS Integer, learningRate AS Double)
' 使用示例
DIM dataset = LoadDataset("quantum_data.qdata")
model.Train(dataset, epochs=100, learningRate=0.01)
' 预测
API model.Predict(input AS QuantumState) AS QuantumState
DIM prediction = model.Predict(testState)
3.2 多模态学习API
' 创建多模态量子模型
API MultimodalQuantumModel.Create(
textDim AS Integer,
imageDim AS Integer,
quantumDim AS Integer,
taskType AS String) AS MultimodalQuantumModel
' 示例:多模态分类
DIM multimodalModel = MultimodalQuantumModel.Create(
textDim:=512,
imageDim:=64*64*3,
quantumDim:=10,
taskType:="classification"
)
' 联合训练多模态数据
API multimodalModel.JointTrain(
textData AS List(Of String),
imageData AS List(Of Bitmap),
quantumData AS List(Of QuantumState),
labels AS List(Of Integer),
epochs AS Integer
)
' 跨模态检索
API multimodalModel.CrossModalRetrieve(
query AS Object, ' 查询(文本、图像或量子态)
targetModality AS String, ' 目标模态:"text", "image", "quantum"
topK AS Integer
) AS List(Of Object)
3.3 终身学习API
' 初始化终身学习器
API LifelongLearner.Create(
baseModel AS QuantumNeuralNetwork,
memorySize AS Integer
) AS LifelongLearner
' 示例:持续学习多个任务
DIM learner = LifelongLearner.Create(baseModel, memorySize:=1000)
' 学习新任务
API learner.LearnNewTask(
taskData AS Dataset,
taskId AS String,
epochs AS Integer
)
' 增量适应
API learner.IncrementalLearn(
newData AS List(Of (QuantumState, Object)),
adaptationRate AS Double
) AS QuantumNeuralNetwork
' 评估所有已学任务
API learner.EvaluateAllTasks() AS Dictionary(Of String, Double)
3.4 量子神经符号API
' 创建神经符号学习器
API NeuroSymbolicLearner.Create(
neuralArch AS List(Of LayerDefinition),
symbolicRules AS List(Of SymbolicRule)
) AS NeuroSymbolicLearner
' 定义符号规则
DIM rules = NEW List(Of SymbolicRule)()
rules.Add(NEW SymbolicRule(
pattern:="IF temperature > 30 THEN state = HOT",
action:=Function(s) ClassifyAsHot(s)
))
rules.Add(NEW SymbolicRule(
pattern:="IF pressure < 100 THEN check_safety",
action:=Function(s) CheckSafety(s)
))
' 联合训练
DIM nsl = NeuroSymbolicLearner.Create(neuralLayers, rules)
nsl.JointTrain(trainingData, epochs:=50)
' 可解释预测
API nsl.ExplainPrediction(input AS QuantumState) AS Explanation
DIM explanation = nsl.ExplainPrediction(testState)
PRINT explanation.NaturalLanguage
3.5 量子因果学习API
' 创建因果模型
API QuantumCausalModel.Create(
variables AS List(Of String),
initialGraph AS CausalGraph
) AS QuantumCausalModel
' 学习因果结构
API causalModel.LearnStructure(
data AS List(Of QuantumState),
testType AS String # "quantum_pc", "quantum_lingam"
)
' 因果效应估计
API causalModel.EstimateEffect(
treatment AS String,
outcome AS String,
data AS List(Of QuantumState)
) AS Double
' 反事实查询
API causalModel.Counterfactual(
observedState AS QuantumState,
intervention AS QuantumIntervention
) AS QuantumState
四、完整使用手册
4.1 数据准备与加载
' 1. 加载经典数据集
DIM classicalData = LoadCSV("data.csv",
columns:={"feature1", "feature2", "label"},
types:={"float", "float", "int"}
)
' 2. 转换为量子态
DIM quantumData = classicalData.Select(Function(row)
RETURN QuantumState.Encode(row.Features, encoding:="amplitude_encoding")
).ToList()
' 3. 创建数据集
DIM dataset = NEW QuantumDataset(
inputs:=quantumData,
labels:=classicalData.Labels,
trainTestSplit:=0.8,
batchSize:=32
)
4.2 模型训练工作流
' 1. 定义模型架构
DIM architecture = NEW QuantumArchitecture()
architecture.AddLayer("Input", 10) ' 10个特征
architecture.AddLayer("QuantumDense", 8) ' 8量子比特隐藏层
architecture.AddLayer("QuantumDense", 6) ' 6量子比特层
architecture.AddLayer("Output", 3) ' 3分类输出
' 2. 创建和编译模型
DIM model = QuantumNeuralNetwork(architecture)
model.Compile(
optimizer:="quantum_adam",
loss:="quantum_cross_entropy",
metrics:={"accuracy", "fidelity"}
)
' 3. 训练模型
model.Fit(
trainData:=dataset.TrainSet,
epochs:=100,
validationData:=dataset.TestSet,
callbacks:={
"early_stopping": {"patience": 10},
"model_checkpoint": {"filepath": "best_model.qnb"}
}
)
' 4. 评估模型
DIM metrics = model.Evaluate(dataset.TestSet)
PRINT $"测试准确率: {metrics("accuracy")}, 保真度: {metrics("fidelity")}"
4.3 高级功能使用示例
4.3.1 多模态学习示例
' 加载多模态数据
DIM textData = LoadTextData("reports.txt")
DIM imageData = LoadImages("images/", size:=(64, 64))
DIM quantumData = LoadQuantumStates("quantum_data.qst")
' 创建多模态模型
DIM multimodalModel = MultimodalQuantumModel.Create(
textDim:=300, # BERT嵌入维度
imageDim:=64*64*3,
quantumDim:=8,
taskType:="regression"
)
' 训练
multimodalModel.JointTrain(
textData:=textData,
imageData:=imageData,
quantumData:=quantumData,
labels:=labels,
epochs:=50
)
' 跨模态检索示例
DIM queryText = "寻找相似的量子态和图像"
DIM results = multimodalModel.CrossModalRetrieve(
query:=queryText,
targetModality:="image",
topK:=5
)
4.3.2 终身学习示例
' 初始化终身学习系统
DIM baseModel = LoadModel("base_model.qnb")
DIM lifelongLearner = LifelongLearner.Create(baseModel, memorySize:=5000)
' 顺序学习多个任务
DIM tasks = {"task1", "task2", "task3", "task4"}
FOR EACH taskId IN tasks
DIM taskData = LoadTaskData(taskId)
lifelongLearner.LearnNewTask(taskData, taskId, epochs:=30)
' 评估所有已学任务
DIM accuracies = lifelongLearner.EvaluateAllTasks()
PRINT $"任务 {taskId} 完成后的各任务准确率:"
FOR EACH kvp IN accuracies
PRINT $"{kvp.Key}: {kvp.Value}"
NEXT
NEXT
' 保存最终模型
SaveModel(lifelongLearner.BaseModel, "lifelong_model.qnb")
4.3.3 量子因果推理示例
' 创建因果图
DIM causalGraph = NEW CausalGraph()
causalGraph.AddVariables({"temperature", "pressure", "reaction_rate", "yield"})
causalGraph.AddEdge("temperature", "reaction_rate")
causalGraph.AddEdge("pressure", "reaction_rate")
causalGraph.AddEdge("reaction_rate", "yield")
' 初始化因果模型
DIM causalModel = QuantumCausalModel.Create(
variables:={"temperature", "pressure", "reaction_rate", "yield"},
initialGraph:=causalGraph
)
' 从数据学习因果结构
causalModel.LearnStructure(experimentData, testType:="quantum_pc")
' 估计因果效应
DIM effect = causalModel.EstimateEffect(
treatment:="temperature",
outcome:="yield",
data:=experimentData
)
PRINT $"温度对产量的因果效应: {effect}"
' 反事实分析
DIM observedState = experimentData(0)
DIM intervention = NEW QuantumIntervention("temperature", "do(high)")
DIM counterfactualYield = causalModel.Counterfactual(observedState, intervention)
PRINT $"如果温度提高,产量会是: {counterfactualYield}"
4.4 部署与优化
' 模型量化压缩
API ModelCompression.Quantize(
model AS QuantumNeuralNetwork,
bits AS Integer, # 8, 4, 2
calibrationData AS List(Of QuantumState)
) AS QuantumNeuralNetwork
' 示例:8位量化
DIM quantizedModel = ModelCompression.Quantize(
model:=trainedModel,
bits:=8,
calibrationData:=calibrationSet
)
' 性能基准测试
API Benchmark.Run(
model AS QuantumNeuralNetwork,
dataset AS Dataset,
hardware AS String # "simulator", "ibmq", "rigetti"
) AS BenchmarkResults
' 部署到量子硬件
DEPLOY MODEL quantizedModel TO HARDWARE "ibmq_montreal"
WITH CONFIG {
"shots": 1000,
"optimization_level": 3,
"resilience_level": 2
}
五、故障排除与常见问题
5.1 常见错误代码
' QERROR-101: 量子比特不足
SOLUTION: 增加量子比特数或使用更小的模型
' QERROR-202: 梯度消失
SOLUTION: 使用量子梯度裁剪或调整学习率
' QERROR-303: 硬件连接超时
SOLUTION: 检查网络连接或使用本地模拟器
' QERROR-404: 模态不匹配
SOLUTION: 检查输入数据的维度和类型
5.2 性能优化建议
-
电路深度优化:
' 使用门融合技术 OPTIMIZE CIRCUIT DEPTH WITH FUSION ' 使用更浅的替代架构 USE SHALLOW_ARCHITECTURE FOR FASTER_EXECUTION -
内存管理:
' 启用量子态压缩 ENABLE STATE_COMPRESSION ' 使用批处理减少内存占用 SET BATCH_SIZE = 32 -
分布式训练:
' 启用数据并行 ENABLE DATA_PARALLEL WITH 4 WORKERS ' 使用梯度累积 SET GRADIENT_ACCUMULATION_STEPS = 4
六、资源与支持
6.1 学习资源
-
官方文档 : https://docs.newbasic.ai
-
量子教程 :
/tutorials/quantum_basics.nb -
示例代码 :
/examples/目录
6.2 获取帮助
' 在NEWBASIC中获取帮助
HELP # 显示所有命令
HELP QuantumNeuralNetwork # 显示特定类帮助
EXAMPLES multimodal # 显示多模态学习示例
' 诊断命令
DIAGNOSE SYSTEM # 系统诊断
CHECK DEPENDENCIES # 检查依赖
TEST CONNECTIVITY # 测试量子硬件连接
本手册涵盖了NEWBASIC 2.06.7的主要功能和API,如需更详细的信息,请参考官方文档或使用内置帮助系统。