python机器学习工程化demo(包含训练模型,预测数据,模型列表,模型详情,删除模型)支持线性回归、逻辑回归、决策树、SVC、随机森林等模型

一.项目概述

用python写的一个机器学习工程化项目,目前仅将模型保存至文件夹下,包括数据读取、删除等全通过文件的形式。不建议用于生产环境当中。

项目整体结构如图

machine-learning.py是工程化代码,.pkl为训练完成之后保存的模型,.json为模型信息。

二.接口列表

1.训练模型接口

url:localhost:5001/api/train POST

入参:

python 复制代码
{
  "features": [
        {"age": 25, "ismanager": 0, "education": 16},
        {"age": 30, "ismanager": 0, "education": 18},
        {"age": 35, "ismanager": 1, "education": 20}
    ],
  "target": [5000, 7000, 23000],
  "model_type": "linear_regression",
  "model_params": {"fit_intercept": false}
}

返回:

python 复制代码
{
	"evaluation": {
		"mse": 1225000000
	},
	"message": "模型训练成功",
	"metadata": {
		"evaluation_metrics": {
			"mse": 1225000000
		},
		"feature_count": 3,
		"feature_names": [
			"age",
			"ismanager",
			"education"
		],
		"is_classification": false,
		"model_id": "b1679812-9566-4f8b-a78a-735af78c51d1",
		"model_params": {
			"fit_intercept": false
		},
		"model_type": "linear_regression",
		"sample_count": 3,
		"training_date": "2025-11-13T10:08:09.474895"
	},
	"model_id": "b1679812-9566-4f8b-a78a-735af78c51d1",
	"success": true
}

训练完成之后,项目的saved_models文件夹下会生产对应模型id的pkl文件和json文件。

2.预测数据

url:localhost:5001/api/predict POST

入参:

python 复制代码
{
  "model_id": "b1679812-9566-4f8b-a78a-735af78c51d1",
  "features": [
        {"age": 40, "ismanager": 1, "education": 20}

    ]
}

返回:

python 复制代码
{
	"model_id": "b1679812-9566-4f8b-a78a-735af78c51d1",
	"model_type": "linear_regression",
	"prediction_count": 1,
	"predictions": [
		41499.99999999999
	],
	"success": true
}

3.模型接口列表

url:localhost:5001/api/models GET

返回:

python 复制代码
{
	"models": [
		{
			"feature_count": 3,
			"model_id": "b1679812-9566-4f8b-a78a-735af78c51d1",
			"model_type": "linear_regression",
			"sample_count": 3,
			"training_date": "2025-11-13T10:08:09.474895"
		}
	],
	"success": true,
	"total_models": 1
}

4.模型详情接口

url:localhost:5001/api/models/<model_id> GET

返回:

python 复制代码
{
	"model_info": {
		"evaluation_metrics": {
			"mse": 0
		},
		"feature_count": 3,
		"feature_names": [
			"age",
			"income",
			"education"
		],
		"is_classification": false,
		"model_id": "d73983a0-a15f-4ea2-b968-d399464cf4cd",
		"model_params": {
			"fit_intercept": false
		},
		"model_type": "linear_regression",
		"sample_count": 3,
		"training_date": "2025-11-12T16:50:14.160146"
	},
	"success": true
}

5.删除模型

url:localhost:5001/api/models/<model_id> DELETE

返回:

python 复制代码
{
	"success": true
}

三.源码

python 复制代码
from flask import Flask, request, jsonify
import pandas as pd
import numpy as np
import pickle
import uuid
import os
from datetime import datetime
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.svm import SVC, SVR
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, mean_squared_error
import json

app = Flask(__name__)

# 存储模型和元数据的字典
models_storage = {}
models_metadata = {}

# 确保模型存储目录存在
MODEL_DIR = "saved_models"
if not os.path.exists(MODEL_DIR):
    os.makedirs(MODEL_DIR)

class ModelManager:
    """模型管理器类"""
    
    # 支持的模型映射
    MODEL_MAP = {
        'random_forest_classifier': RandomForestClassifier,
        'random_forest_regressor': RandomForestRegressor,
        'linear_regression': LinearRegression,
        'logistic_regression': LogisticRegression,
        'svm_classifier': SVC,
        'svm_regressor': SVR,
        'decision_tree_classifier': DecisionTreeClassifier,
        'decision_tree_regressor': DecisionTreeRegressor
    }
    
    @staticmethod
    def create_model(model_type, **kwargs):
        """创建模型实例"""
        if model_type not in ModelManager.MODEL_MAP:
            raise ValueError(f"不支持的模型类型: {model_type}")
        
        model_class = ModelManager.MODEL_MAP[model_type]
        return model_class(**kwargs)
    
    @staticmethod
    def save_model(model, model_id, metadata):
        """保存模型到文件"""
        model_path = os.path.join(MODEL_DIR, f"{model_id}.pkl")
        metadata_path = os.path.join(MODEL_DIR, f"{model_id}_metadata.json")
        
        # 保存模型
        with open(model_path, 'wb') as f:
            pickle.dump(model, f)
        
        # 保存元数据
        with open(metadata_path, 'w', encoding='utf-8') as f:
            json.dump(metadata, f, ensure_ascii=False, indent=2)
    
    @staticmethod
    def load_model(model_id):
        """从文件加载模型"""
        model_path = os.path.join(MODEL_DIR, f"{model_id}.pkl")
        metadata_path = os.path.join(MODEL_DIR, f"{model_id}_metadata.json")
        
        if not os.path.exists(model_path):
            return None, None
        
        # 加载模型
        with open(model_path, 'rb') as f:
            model = pickle.load(f)
        
        # 加载元数据
        with open(metadata_path, 'r', encoding='utf-8') as f:
            metadata = json.load(f)
        
        return model, metadata

@app.route('/api/train', methods=['POST'])
def train_model():
    """
    训练模型接口
    输入: 特征数据、目标值、模型类型、参数
    输出: 模型ID和训练结果
    """
    try:
        # 获取请求数据
        data = request.get_json()
        
        # 验证必需字段
        required_fields = ['features', 'target', 'model_type']
        for field in required_fields:
            if field not in data:
                return jsonify({
                    'success': False,
                    'error': f'缺少必需字段: {field}'
                }), 400
        
        features = data['features']
        target = data['target']
        model_type = data['model_type']
        model_params = data.get('model_params', {})
        
        # 验证数据格式
        if not isinstance(features, list) or not isinstance(target, list):
            return jsonify({
                'success': False,
                'error': 'features 和 target 必须是列表格式'
            }), 400
        
        if len(features) != len(target):
            return jsonify({
                'success': False,
                'error': 'features 和 target 长度不一致'
            }), 400
        
        # 转换为DataFrame
        try:
            X = pd.DataFrame(features)
            y = pd.Series(target)
        except Exception as e:
            return jsonify({
                'success': False,
                'error': f'数据格式错误: {str(e)}'
            }), 400
        
        # 数据预处理
        # 处理分类目标变量
        if y.dtype == 'object':
            le = LabelEncoder()
            y_encoded = le.fit_transform(y)
            is_classification = True
        else:
            y_encoded = y
            is_classification = len(y.unique()) / len(y) < 0.05  # 简单判断分类还是回归
        
        # 特征标准化
        scaler = StandardScaler()
        X_scaled = scaler.fit_transform(X)
        
        # 划分训练测试集
        X_train, X_test, y_train, y_test = train_test_split(
            X_scaled, y_encoded, test_size=0.2, random_state=42
        )
        
        # 创建和训练模型
        try:
            model = ModelManager.create_model(model_type, **model_params)
            model.fit(X_train, y_train)
        except Exception as e:
            return jsonify({
                'success': False,
                'error': f'模型训练失败: {str(e)}'
            }), 400
        
        # 模型评估
        y_pred = model.predict(X_test)
        if is_classification:
            accuracy = accuracy_score(y_test, y_pred)
            evaluation_metric = {'accuracy': accuracy}
        else:
            mse = mean_squared_error(y_test, y_pred)
            evaluation_metric = {'mse': mse}
        
        # 生成模型ID
        model_id = str(uuid.uuid4())
        
        # 准备模型包(包含模型和预处理器)
        model_package = {
            'model': model,
            'scaler': scaler,
            'label_encoder': le if is_classification else None,
            'is_classification': is_classification,
            'feature_names': X.columns.tolist()
        }
        
        # 模型元数据
        metadata = {
            'model_id': model_id,
            'model_type': model_type,
            'model_params': model_params,
            'training_date': datetime.now().isoformat(),
            'feature_count': X.shape[1],
            'sample_count': X.shape[0],
            'is_classification': is_classification,
            'evaluation_metrics': evaluation_metric,
            'feature_names': X.columns.tolist()
        }
        
        # 保存模型
        ModelManager.save_model(model_package, model_id, metadata)
        
        # 存储在内存中(可选,用于快速访问)
        models_storage[model_id] = model_package
        models_metadata[model_id] = metadata
        
        return jsonify({
            'success': True,
            'model_id': model_id,
            'message': '模型训练成功',
            'evaluation': evaluation_metric,
            'metadata': metadata
        }), 200
        
    except Exception as e:
        return jsonify({
            'success': False,
            'error': f'服务器错误: {str(e)}'
        }), 500

@app.route('/api/predict', methods=['POST'])
def predict():
    """
    预测接口
    输入: 模型ID、特征数据
    输出: 预测结果
    """
    try:
        data = request.get_json()
        
        # 验证必需字段
        if 'model_id' not in data or 'features' not in data:
            return jsonify({
                'success': False,
                'error': '缺少 model_id 或 features 字段'
            }), 400
        
        model_id = data['model_id']
        features = data['features']
        
        # 从内存或文件加载模型
        if model_id in models_storage:
            model_package = models_storage[model_id]
            metadata = models_metadata[model_id]
        else:
            model_package, metadata = ModelManager.load_model(model_id)
            if model_package is None:
                return jsonify({
                    'success': False,
                    'error': '模型不存在或已过期'
                }), 404
        
        # 验证特征数据
        if not isinstance(features, list):
            return jsonify({
                'success': False,
                'error': 'features 必须是列表格式'
            }), 400
        
        # 转换为DataFrame
        try:
            X_pred = pd.DataFrame(features)
        except Exception as e:
            return jsonify({
                'success': False,
                'error': f'特征数据格式错误: {str(e)}'
            }), 400
        
        # 检查特征数量
        expected_features = metadata['feature_count']
        if X_pred.shape[1] != expected_features:
            return jsonify({
                'success': False,
                'error': f'特征数量不匹配。期望: {expected_features}, 实际: {X_pred.shape[1]}'
            }), 400
        
        # 数据预处理
        scaler = model_package['scaler']
        X_pred_scaled = scaler.transform(X_pred)
        
        # 进行预测
        model = model_package['model']
        predictions = model.predict(X_pred_scaled)
        
        # 如果是分类问题,解码标签
        if model_package['is_classification'] and model_package['label_encoder'] is not None:
            le = model_package['label_encoder']
            predictions = le.inverse_transform(predictions)
        
        # 返回预测结果
        return jsonify({
            'success': True,
            'model_id': model_id,
            'predictions': predictions.tolist(),
            'prediction_count': len(predictions),
            'model_type': metadata['model_type']
        }), 200
        
    except Exception as e:
        return jsonify({
            'success': False,
            'error': f'预测失败: {str(e)}'
        }), 500

@app.route('/api/models', methods=['GET'])
def list_models():
    """列出所有已训练的模型"""
    try:
        models_list = []
        for model_id, metadata in models_metadata.items():
            models_list.append({
                'model_id': model_id,
                'model_type': metadata['model_type'],
                'training_date': metadata['training_date'],
                'feature_count': metadata['feature_count'],
                'sample_count': metadata['sample_count']
            })
        
        return jsonify({
            'success': True,
            'models': models_list,
            'total_models': len(models_list)
        }), 200
    except Exception as e:
        return jsonify({
            'success': False,
            'error': f'获取模型列表失败: {str(e)}'
        }), 500

@app.route('/api/models/<model_id>', methods=['GET'])
def get_model_info(model_id):
    """获取特定模型的详细信息"""
    try:
        if model_id in models_metadata:
            metadata = models_metadata[model_id]
        else:
            _, metadata = ModelManager.load_model(model_id)
            if metadata is None:
                return jsonify({
                    'success': False,
                    'error': '模型不存在'
                }), 404
        
        return jsonify({
            'success': True,
            'model_info': metadata
        }), 200
    except Exception as e:
        return jsonify({
            'success': False,
            'error': f'获取模型信息失败: {str(e)}'
        }), 500

@app.route('/api/health', methods=['GET'])
def health_check():
    """健康检查接口"""
    return jsonify({
        'status': 'healthy',
        'timestamp': datetime.now().isoformat(),
        'models_loaded': len(models_storage)
    }), 200

@app.route('/api/models/<model_id>', methods=['DELETE'])
def delete_model(model_id):
    """删除模型接口"""
    try:
        if model_id in models_metadata:
            os.remove(MODEL_DIR+"/"+model_id+".pkl")
            os.remove(MODEL_DIR+"/"+model_id+"_metadata.json")
        else:
            _, metadata = ModelManager.load_model(model_id)
            if metadata is None:
                return jsonify({
                    'success': False,
                    'error': '模型不存在'
                }), 404
        
        return jsonify({
            'success': True,
        }), 200
    except Exception as e:
        return jsonify({
            'success': False,
            'error': f'删除模型失败: {str(e)}'
        }), 500

if __name__ == '__main__':
    # 启动时加载已保存的模型
    print("正在加载已保存的模型...")
    for filename in os.listdir(MODEL_DIR):
        if filename.endswith('_metadata.json'):
            model_id = filename.replace('_metadata.json', '')
            model_package, metadata = ModelManager.load_model(model_id)
            if model_package and metadata:
                models_storage[model_id] = model_package
                models_metadata[model_id] = metadata
                print(f"已加载模型: {model_id}")
    
    print(f"已加载 {len(models_storage)} 个模型")
    app.run(debug=True, host='0.0.0.0', port=5001)
相关推荐
AKAMAI10 小时前
Akamai Cloud客户案例 | Avesha 在 Akamai 云上扩展 Kubernetes 解决方案
人工智能·云计算
wasp52011 小时前
AgentScope Java 核心架构深度解析
java·开发语言·人工智能·架构·agentscope
智算菩萨11 小时前
高效多模态大语言模型:从统一框架到训练与推理效率的系统化理论梳理
大数据·人工智能·多模态
free-elcmacom11 小时前
深度学习<4>高效模型架构与优化器的“效率革命”
人工智能·python·深度学习·机器学习·架构
liliangcsdn11 小时前
python模拟beam search优化LLM输出过程
人工智能·python
算法与编程之美11 小时前
深度学习任务中的多层卷积与全连接输出方法
人工智能·深度学习
Deepoch11 小时前
具身智能产业新范式:Deepoc开发板如何破解机器人智能化升级难题
人工智能·科技·机器人·开发板·具身模型·deepoc
浪子不回头41512 小时前
SGLang学习笔记
人工智能·笔记·学习
王琦031812 小时前
Python 函数详解
开发语言·python
胡伯来了12 小时前
13. Python打包工具- setuptools
开发语言·python