Go 实现动态规划
动态规划(Dynamic Programming, DP)是一种分阶段解决问题的方法,适用于具有重叠子问题和最优子结构性质的问题。下面我将展示几个用Go语言实现的经典动态规划示例。
1. 斐波那契数列
go
package main
import "fmt"
// 递归方法(非DP,效率低)
func fibRecursive(n int) int {
if n <= 1 {
return n
}
return fibRecursive(n-1) + fibRecursive(n-2)
}
// 记忆化搜索(自顶向下DP)
func fibMemo(n int, memo map[int]int) int {
if n <= 1 {
return n
}
if val, ok := memo[n]; ok {
return val
}
memo[n] = fibMemo(n-1, memo) + fibMemo(n-2, memo)
return memo[n]
}
// 动态规划(自底向上)
func fibDP(n int) int {
if n <= 1 {
return n
}
dp := make([]int, n+1)
dp[0], dp[1] = 0, 1
for i := 2; i <= n; i++ {
dp[i] = dp[i-1] + dp[i-2]
}
return dp[n]
}
// 优化空间版本的DP
func fibDPSpaceOptimized(n int) int {
if n <= 1 {
return n
}
prev, curr := 0, 1
for i := 2; i <= n; i++ {
prev, curr = curr, prev+curr
}
return curr
}
func main() {
n := 10
fmt.Println("递归:", fibRecursive(n))
memo := make(map[int]int)
fmt.Println("记忆化:", fibMemo(n, memo))
fmt.Println("DP:", fibDP(n))
fmt.Println("DP(空间优化):", fibDPSpaceOptimized(n))
}
2. 0-1背包问题
go
package main
import "fmt"
func knapsack(weights []int, values []int, capacity int) int {
n := len(weights)
dp := make([][]int, n+1)
for i := range dp {
dp[i] = make([]int, capacity+1)
}
for i := 1; i <= n; i++ {
for w := 1; w <= capacity; w++ {
if weights[i-1] <= w {
dp[i][w] = max(values[i-1]+dp[i-1][w-weights[i-1]], dp[i-1][w])
} else {
dp[i][w] = dp[i-1][w]
}
}
}
return dp[n][capacity]
}
// 空间优化版本
func knapsackOptimized(weights []int, values []int, capacity int) int {
n := len(weights)
dp := make([]int, capacity+1)
for i := 0; i < n; i++ {
for w := capacity; w >= weights[i]; w-- {
dp[w] = max(dp[w], values[i]+dp[w-weights[i]])
}
}
return dp[capacity]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func main() {
weights := []int{2, 3, 4, 5}
values := []int{3, 4, 5, 6}
capacity := 8
fmt.Println("背包最大价值:", knapsack(weights, values, capacity))
fmt.Println("背包最大价值(空间优化):", knapsackOptimized(weights, values, capacity))
}
3. 最长公共子序列(LCS)
go
package main
import "fmt"
func longestCommonSubsequence(text1 string, text2 string) int {
m, n := len(text1), len(text2)
dp := make([][]int, m+1)
for i := range dp {
dp[i] = make([]int, n+1)
}
for i := 1; i <= m; i++ {
for j := 1; j <= n; j++ {
if text1[i-1] == text2[j-1] {
dp[i][j] = dp[i-1][j-1] + 1
} else {
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
}
}
}
return dp[m][n]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func main() {
text1 := "abcde"
text2 := "ace"
fmt.Println("LCS长度:", longestCommonSubsequence(text1, text2))
}
4. 硬币找零问题
go
package main
import (
"fmt"
"math"
)
func coinChange(coins []int, amount int) int {
dp := make([]int, amount+1)
for i := range dp {
dp[i] = amount + 1 // 初始化为一个不可能的大值
}
dp[0] = 0
for i := 1; i <= amount; i++ {
for _, coin := range coins {
if coin <= i {
dp[i] = min(dp[i], dp[i-coin]+1)
}
}
}
if dp[amount] > amount {
return -1
}
return dp[amount]
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func main() {
coins := []int{1, 2, 5}
amount := 11
fmt.Println("最少硬币数:", coinChange(coins, amount))
}
动态规划实现要点
- 定义状态:明确DP数组或变量的含义
- 确定状态转移方程:找出如何从之前的状态计算当前状态
- 初始化边界条件:设置初始状态的值
- 确定计算顺序:是自顶向下还是自底向上
- 考虑空间优化:有时可以降低空间复杂度
Go语言实现动态规划时,通常使用切片(slice)来表示DP数组,注意初始化大小和边界条件。对于需要优化的场景,可以考虑使用滚动数组等技术减少空间使用。
希望这些示例能帮助你理解如何在Go中实现动态规划算法!