【C++—STL】红黑树底层封装与set/map模拟实现

目录

引言

[一. 源码及框架分析](#一. 源码及框架分析)

[二. 模拟实现set/map](#二. 模拟实现set/map)

[2.1 实现出复用红黑树的框架](#2.1 实现出复用红黑树的框架)

[2.1.1 实现仿函数KeyOfT](#2.1.1 实现仿函数KeyOfT)

[2.1.2 调整insert](#2.1.2 调整insert)

[2.2 迭代器的实现](#2.2 迭代器的实现)

[2.2.1 iterator实现思路分析](#2.2.1 iterator实现思路分析)

[2.2.2 Iterator代码实现](#2.2.2 Iterator代码实现)

[2.3 map中的operator[ ]](#2.3 map中的operator[ ])

[2.4 set的完整封装实现](#2.4 set的完整封装实现)

[2.5 map的完整封装实现](#2.5 map的完整封装实现)

[2.6 完整的红黑树模板类](#2.6 完整的红黑树模板类)


引言

在C++标准模板库(STL)中,std::set 和 std::map 是两个常用的关联容器,它们提供了高效的元素存储、查找和插入操作。这些容器的底层实现通常基于红黑树 (Red-Black Tree),一种自平衡的二叉搜索树,能够保证操作的时间复杂度为O(log N)


一. 源码及框架分析

SGI-STL的map和set源代码主要分布在stl_map.h、stl_set.h和stl_tree.h等头文件中。核心框架如下:

  • set 和 map 都复用了一个红黑树模板类 rb_tree。
  • 对于 set,它存储的元素是键(Key),因此实例化 rb_tree 时,第二个模板参数为 Key,使用 identity 仿函数提取键。
  • 对于 map,它存储键值对(pair<Key, T>),第二个模板参数为 pair<const Key, T>,使用 select1st 仿函数提取键。

源码片段:

cpp 复制代码
// stl_set.h
template <class Key, class Compare = less<Key>, class Alloc = alloc>
class set {
public:
  typedef Key key_type;
  typedef Key value_type;
private:
  typedef rb_tree<key_type, value_type, identity<value_type>, Compare, Alloc> rep_type;
  rep_type t;  // red-black tree representing set
};

// stl_map.h
template <class Key, class T, class Compare = less<Key>, class Alloc = alloc>
class map {
public:
  typedef Key key_type;
  typedef T mapped_type;
  typedef pair<const Key, T> value_type;
private:
  typedef rb_tree<key_type, value_type, select1st<value_type>, Compare, Alloc> rep_type;
  rep_type t;  // red-black tree representing map
};

// stl_tree.h
struct __rb_tree_node_base
{
 typedef __rb_tree_color_type color_type;
 typedef __rb_tree_node_base* base_ptr;
 color_type color; 
 base_ptr parent;
 base_ptr left;
 base_ptr right;
};

// stl_tree.h
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc 
= alloc>
class rb_tree {
protected:
 typedef void* void_pointer;
 typedef __rb_tree_node_base* base_ptr;
 typedef __rb_tree_node<Value> rb_tree_node;
 typedef rb_tree_node* link_type;
 typedef Key key_type;
 typedef Value value_type;
public:
 // insert⽤的是第⼆个模板参数左形参 
 pair<iterator,bool> insert_unique(const value_type& x);
 
 // erase和find⽤第⼀个模板参数做形参 
 size_type erase(const key_type& x);
 iterator find(const key_type& x);
protected:
 size_type node_count; // keeps track of size of tree
 link_type header;
};
template <class Value>
struct __rb_tree_node : public __rb_tree_node_base
{
 typedef __rb_tree_node<Value>* link_type;
 Value value_field;
};

  • rb_tree 的模板参数包括 Key(用于find/erase的参数)、Value(结点存储的数据类型)、KeyOfValue(键提取仿函数)。
  • insert 使用 Value 类型参数,find 和 erase 使用 Key 类型参数。
  • 这种设计允许红黑树既支持纯键搜索(set),也支持键值对搜索(map)。
  • 通过分析,我们可以看到STL使用泛型编程巧妙地实现了代码复用。Value 决定了结点存储类型:对于set是Key,对于map是pair<const Key, T>。

问:rb_tree第二个模板参数Value已经控制了红黑树结点中存储的数据类型,为什么还要传第一个模板参数Key呢?尤其是set,两个模板参数是一样的

答:对于 map和set,find/erase时的函数参数都是Key,所以第一个模板参数是传给find/erase等函数做形参的类型的。对于set而言两个参数是一样的,但是对于map而言就完全不一样了,map insert的是pair对象,但是find和ease的是Key对象。

这样设计的意义:

  • 将"用于查找的关键字类型"与"实际存储的数据类型"分离
  • 使得同一个红黑树模板可以同时适配 set(T=K)和 map(T=pair<K,V>)
  • 提供类型安全的查找接口

  • 通过下图对框架的分析,我们可以看到源码中rb_tree用了一个巧妙的泛型思想实现,rb_tree是实 现key的搜索场景,还是key/value的搜索场景不是直接写死的,而是由第二个模板参数Value决定 _rb_tree_node中存储的数据类型。
  • set实例化rb_tree时第二个模板参数给的是key,map实例化rb_tree时第二个模板参数给的是 pair,这样一颗红黑树既可以实现key搜索场景的set,也可以实现key/value搜索场景的map。

二. 模拟实现set/map

set/map模拟实现主要以下面的几个步骤完成:

  1. 实现红黑树(注:在上一篇文章中已经详细实现了红黑树,如有需要可查看红黑树的实现)
  2. 封装set/map框架,解决KeyOfT
  3. 迭代器Iterator的实现
  4. cosnt_iterator的实现
  5. key不支持修改的问题
  6. operator[ ]

2.1 实现出复用红黑树的框架

  • 参考源码框架,map和set复用之前实现的红黑树。
  • 这里相比源码调整一下,key参数就用K,value参数就用V,红黑树中的数据类型使用T。
  • 其次因为RBTree实现了泛型不知道T参数导致是K,还是pair,那么insert内部进行插入逻辑比较时,就没办法进行比较,因为pair的默认支持的是key和value一起参与比较,我们需要的是任何时候只比较key,所以我们在map和set层分别实现⼀个MapKeyOfT和SetKeyOfT的仿函数传给 RBTree的KeyOfT,然后RBTree中通过KeyOfT仿函数取出T类型对象中的key,再进行比较,具体细节参考如下代码实现。

2.1.1 实现仿函数KeyOfT

cpp 复制代码
namespace MySet
{
	template<class K>
	class set
	{
		// 内部类(把key取出来)
		struct SetKeyOfT
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};

        pair<iterator, bool> insert(const K& key)
		{
			return _t.Insert(key);
		}
private:
		// key的迭代器不能支持修改,把第二个模板参数改为const K
		RBTree<K, const K, SetKeyOfT> _t;
	};
}
cpp 复制代码
namespace MyMap
{
	template<class K,class V>
	class map
	{
		// 内部类(把key取出来)
		struct MapKeyOfT
		{
			const K& operator()(const pair<K, V>& kv)
			{
				return kv.first;
			}
		};
public:
        pair<iterator, bool> insert(const pair<K, V>& kv)
		{
			return _t.Insert(kv);
		}
private:
		RBTree<K, pair<const K, V>, MapKeyOfT> _t;
	};
}

2.1.2 调整insert

cpp 复制代码
enum Color
{
	RED,
	BLACK
};

template<class T>
struct RBTreeNode
{
	T _data;
	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;
	Color _col;

	RBTreeNode(const T& data)
		:_data(data)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _col(RED) 
	{}
};

// RBTree<K, K> _t;			  // set
// RBTree<K, pair<K, V>> _t;  // map

template<class K, class T, class KeyOfT>
class RBTree
{
	typedef RBTreeNode<T> Node;
public:

	~RBTree()
	{
		Destroy(_root);
		_root = nullptr;
	}

	pair<Iterator, bool> Insert(const T& data)
	{
		if (_root == nullptr)
		{
			_root = new Node(data);
			_root->_col = BLACK; // 根节点必须为黑色
			return { Iterator(_root), true }; // 插入成功
		}

		KeyOfT kot; // 通过kot,把T类型的数据中的key取出来,然后在下面比较大小
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (kot(cur->_data) < kot(data)) // 如果data是key就用key比较大小可以;如果data是pair,用pair比较大小,不一定是我们想要的
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kot(cur->_data) > kot(data))
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return { Iterator(cur), false }; // 已经有这个值,插入失败
			}
		}

		// 新增节点必须为红色
		cur = new Node(data); 
		Node* newnode = cur; // cur在旋转时可能会变,用newnode保存一下
		cur->_col = RED;
		if (kot(parent->_data) < kot(data))
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;

		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;
			if (grandfather->_left == parent)
			{
				//    g
				//  p   u
				//c
				Node* uncle = grandfather->_right;
				// 叔叔存在且为红
				if (uncle && uncle->_col == RED)
				{
					// 变色+继续往上处理
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					cur = grandfather;
					parent = cur->_parent;
				}
				else // 叔叔不存在或者叔叔存在且为黑
				{
					//    g
					//  p   u
					//c
					// 单旋+变色
					if (cur == parent->_left)
					{
						RotateR(grandfather);

						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						//    g
						//  p   u
						//	  c
						// 双旋+变色
						RotateL(parent);
						RotateR(grandfather);

						cur->_col = BLACK;
						grandfather->_col = RED;
					}

					break;
				}
			}
			else
			{
				//    g
				//  p   u
				//		  c
				Node* uncle = grandfather->_left;
				// 叔叔存在且为红
				if (uncle && uncle->_col == RED)
				{
					// 变色+继续往上处理
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					cur = grandfather;
					parent = cur->_parent;
				}
				else // 叔叔不存在或者叔叔存在且为黑
				{
					//    g
					//  p   u
					//		  c
					// 单旋+变色
					if (cur == parent->_right)
					{
						RotateL(grandfather);

						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						//    g
						//  p   u
						//	  c
						// 双旋+变色
						RotateR(parent);
						RotateL(grandfather);

						cur->_col = BLACK;
						grandfather->_col = RED;
					}

					break;
				}
			}
		}

		// 无论最后根节点是否为黑,就直接置为黑
		_root->_col = BLACK;

		return { Iterator(newnode), true };
	}

private:
	void Destroy(Node* root)
	{
		if (root == nullptr)
			return;
		Destroy(root->_left);
		Destroy(root->_right);
		delete root;
	}
private:
	Node* _root = nullptr;
};

2.2 迭代器的实现

2.2.1 iterator实现思路分析

  • iterator实现的大框架跟list的iterator思路是一致的,用一个类型封装结点的指针,再通过重载运算符实现,迭代器像指针一样访问的行为。
  • 这里的难点是operator++和operator--的实现。之前使用部分,我们分析了,map和set的迭代器走的是中序遍历,即左子树->根结点->右子树,那么begin()会返回中序第一个结点的iterator也就是10 所在结点的迭代器。
  • 迭代器++的核心逻辑就是不看全局,只看局部,只考虑当前中序局部要访问的下一个结点。
  • 迭代器++时,如果it指向的结点的子树不为空,代表当前结点已经访问完了,要访问下一个结点是右子树的中序第一个,一棵树中序第一个是最左结点,所以直接找右子树的最左结点即可。
  • 迭代器++时,如果it指向的结点的右子树空,代表当前结点已经访问完了且当前结点所在的子树也 访问完了,要访问的下一个结点在当前结点的祖先里面,所以要沿着当前结点到根的祖先路径向上 找。
  • 如果当前结点是父亲的左,根据中序左子树->根结点->右子树,那么下一个访问的结点就是当前结 点的父亲;如下图:it指向25,25右为空,25是30的左,所以下一个访问的结点就是30。
  • 如果当前结点是父亲的右,根据中序左子树->根结点->右子树,当前当前结点所在的子树访问完 了,当前结点所在父亲的子树也访问完了,那么下一个访问的需要继续往根的祖先中去找,直到找 到孩子是父亲左的那个祖先就是中序要遍历的下一个结点。如下图:it指向15,15右为空,15是10 的右,15所在⼦树话访问完了,10所在子树也访问完了,继续往上找,10是18的左,那么下⼀个 访问的结点就是18。
  • end()如何表示呢?如下图:当it指向50时,++it时,50是40的右,40是30的右,30是18的右,18 到根没有父亲,没有找到孩子是父亲左的那个祖先,这时父亲为空了,那我们就把it中的结点指针 置为nullptr,我们用nullptr去充当end。需要注意的是stl源码空,红黑树增加了一个哨兵位头结点 做为end(),这哨兵位头结点和根互为父亲,左指向最左结点,右指向最右结点。相比我们用nullptr作为end(),差别不大,他能实现的,我们也能实现。只是--end()判断到结点时空,特殊处理一下,让迭代器结点指向最右结点。具体参考迭代器--实现。
  • 迭代器--的实现跟++的思路完全类似,逻辑正好反过来即可,因为他访问顺序是右子树->根结点-> 左子树,具体参考下面代码实现。
  • set的iterator也不支持修改,我们把set的第二个模板参数改成const K即可, RBTree<K,const K, SetKeyOfT> _t;
  • map的iterator不支持修改key但是可以修改value,我们把map的第二个模板参数pair的第一个参数改成const K即可, RBTree<K,pair<const K,V>, MapKeyOfT> _t;

2.2.2 Iterator代码实现

红黑树底层封装:

cpp 复制代码
// 迭代器
template<class T, class Ref, class Ptr>
struct RBTreeIterator
{
	typedef RBTreeNode<T> Node;
	typedef RBTreeIterator<T, Ref, Ptr> Self;

	Node* _node;

	RBTreeIterator(Node* node)
		:_node(node)
	{}

	Ref operator*()
	{
		return _node->_data;
	}

	// map常用->访问数据 
	Ptr operator->()
	{
		return &_node->_data;
	}

	// 返回类型依旧是迭代器
	Self& operator++()
	{
		// 右孩子不为空,找右孩子的最左节点
		if (_node->_right)
		{
			Node* minRight = _node->_right;
			while (minRight->_left)
			{
				minRight = minRight->_left;
			}

			_node = minRight;
		}
		// 右为空,找孩子是父亲左的祖先
		else
		{
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_right)
			{
				cur = parent;
				parent = parent->_parent;
			}

			_node = parent;
		}

		return *this;
	}

	bool operator!=(const Self& s)
	{
		return _node != s._node;
	}

	bool operator==(const Self& s)
	{
		return _node == s._node;
	}
};

set封装:

cpp 复制代码
namespace MySet
{
	template<class K>
	class set
	{
    public:
		// 没有实例化,编译器无法确定这是类型还是静态成员变量
		// 前面要加一个typename,告诉编译器这时一个类型
		typedef typename RBTree<K, const K, SetKeyOfT>::Iterator iterator;
		typedef typename RBTree<K, const K, SetKeyOfT>::ConstIterator const_iterator;

		iterator begin()
		{
			return _t.Begin();
		}

		iterator end()
		{
			return _t.End();
		}

		const_iterator begin() const
		{
			return _t.Begin();
		}

		const_iterator end() const
		{
			return _t.End();
		}
	private:
		// key的迭代器不能支持修改,把第二个模板参数改为const K
		RBTree<K, const K, SetKeyOfT> _t;
	};
}

map封装:

cpp 复制代码
namespace MyMap
{
	template<class K,class V>
	class map
	{
	public:
		typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::Iterator iterator;
		typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::ConstIterator const_iterator;

		iterator begin()
		{
			return _t.Begin();
		}

		iterator end()
		{
			return _t.End();
		}

		const_iterator begin() const
		{
			return _t.Begin();
		}

		const_iterator end() const
		{
			return _t.End();
		}
	private:
		RBTree<K, pair<const K, V>, MapKeyOfT> _t;
	};
}

2.3 map中的operator[ ]

map 支持下标访问 dict["key"],其底层逻辑非常巧妙。它依赖于 insert 函数的返回值 。

insert 返回的是 pair<iterator, bool>

  • 如果 Key 存在,返回 {指向该元素的迭代器, false}

  • 如果 Key 不存在,插入新节点,返回 {指向新节点的迭代器, true}

利用这个特性,operator[] 的实现如下 :

cpp 复制代码
V& operator[](const K& key) {
    // 1. 调用 insert,无论 key 是否存在,ret.first 都会指向该节点
    // pair<iterator, bool> ret = insert(make_pair(key, V()));
    auto[it, flag] = _t.Insert({ key, V() }); // 结构化绑定 C++17
    
    // 2. 返回该节点 value 的引用,以便用户读写
    return ret.first->second;
}

2.4 set的完整封装实现

set的特点

  • 存储的是Key值,用于快速查找
  • 不允许重复元素
  • 底层是红黑树,按Key有序存储

cpp 复制代码
namespace MySet
{
	template<class K>
	class set
	{
		// 内部类(把key取出来)
		struct SetKeyOfT
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};

	public:
		// 没有实例化,编译器无法确定这是类型还是静态成员变量
		// 前面要加一个typename,告诉编译器这时一个类型
		typedef typename RBTree<K, const K, SetKeyOfT>::Iterator iterator;
		typedef typename RBTree<K, const K, SetKeyOfT>::ConstIterator const_iterator;

		iterator begin()
		{
			return _t.Begin();
		}

		iterator end()
		{
			return _t.End();
		}

		const_iterator begin() const
		{
			return _t.Begin();
		}

		const_iterator end() const
		{
			return _t.End();
		}

		pair<iterator, bool> insert(const K& key)
		{
			return _t.Insert(key);
		}

		iterator find(const K& key)
		{
			return _t.Find(key);
		}

	private:
		// key的迭代器不能支持修改,把第二个模板参数改为const K
		RBTree<K, const K, SetKeyOfT> _t;
	};
}

2.5 map的完整封装实现

map的特点

  • 存储键值对(Key-Value)
  • 通过Key快速查找Value
  • Key不允许重复,Value可以重复
  • 支持通过operator[]访问元素

cpp 复制代码
namespace MyMap
{
	template<class K,class V>
	class map
	{
		// 内部类(把key取出来)
		struct MapKeyOfT
		{
			const K& operator()(const pair<K, V>& kv)
			{
				return kv.first;
			}
		};

	public:
		typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::Iterator iterator;
		typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::ConstIterator const_iterator;

		iterator begin()
		{
			return _t.Begin();
		}

		iterator end()
		{
			return _t.End();
		}

		const_iterator begin() const
		{
			return _t.Begin();
		}

		const_iterator end() const
		{
			return _t.End();
		}

		pair<iterator, bool> insert(const pair<K, V>& kv)
		{
			return _t.Insert(kv);
		}

		iterator find(const K& key)
		{
			return _t.Find(key);
		}

		// 插入+修改(因为返回的是引用,所以可以修改)
		V& operator[](const K& key)
		{
			// pair<iterator, bool> ret = _t.Insert({ key, V() });
			auto[it, flag] = _t.Insert({ key, V() });
			return it->second;
		}

	private:
		RBTree<K, pair<const K, V>, MapKeyOfT> _t;
	};
}

2.6 完整的红黑树模板类

cpp 复制代码
enum Color
{
	RED,
	BLACK
};

template<class T>
struct RBTreeNode
{
	T _data;
	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;
	Color _col;

	RBTreeNode(const T& data)
		:_data(data)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _col(RED) 
	{}
};

// RBTree<K, K> _t;			  // set
// RBTree<K, pair<K, V>> _t;  // map

// 迭代器
template<class T, class Ref, class Ptr>
struct RBTreeIterator
{
	typedef RBTreeNode<T> Node;
	typedef RBTreeIterator<T, Ref, Ptr> Self;

	Node* _node;

	RBTreeIterator(Node* node)
		:_node(node)
	{}

	Ref operator*()
	{
		return _node->_data;
	}

	// map常用->访问数据 
	Ptr operator->()
	{
		return &_node->_data;
	}

	// 返回类型依旧是迭代器
	Self& operator++()
	{
		// 右孩子不为空,找右孩子的最左节点
		if (_node->_right)
		{
			Node* minRight = _node->_right;
			while (minRight->_left)
			{
				minRight = minRight->_left;
			}

			_node = minRight;
		}
		// 右为空,找孩子是父亲左的祖先
		else
		{
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_right)
			{
				cur = parent;
				parent = parent->_parent;
			}

			_node = parent;
		}

		return *this;
	}

	bool operator!=(const Self& s)
	{
		return _node != s._node;
	}

	bool operator==(const Self& s)
	{
		return _node == s._node;
	}
};

template<class K, class T, class KeyOfT>
class RBTree
{
	typedef RBTreeNode<T> Node;
public:
	typedef RBTreeIterator<T, T&, T*> Iterator;
	typedef RBTreeIterator<T, const T&, const T*> ConstIterator;

	~RBTree()
	{
		Destroy(_root);
		_root = nullptr;
	}

	Iterator Begin()
	{
		// 最左节点
		Node* minLeft = _root;
		while (minLeft && minLeft->_left)
		{
			minLeft = minLeft->_left;
		}

		return Iterator(minLeft); // 用minLeft构造了一个迭代器
	}

	Iterator End()
	{
		return Iterator(nullptr); // 用nullptr充当end
	}

	ConstIterator Begin() const
	{
		// 最左节点
		Node* minLeft = _root;
		while (minLeft && minLeft->_left)
		{
			minLeft = minLeft->_left;
		}

		return ConstIterator(minLeft); // 用minLeft构造了一个迭代器
	}

	ConstIterator End() const
	{
		return ConstIterator(nullptr); // 用nullptr充当end
	}

	pair<Iterator, bool> Insert(const T& data)
	{
		if (_root == nullptr)
		{
			_root = new Node(data);
			_root->_col = BLACK; // 根节点必须为黑色
			return { Iterator(_root), true }; // 插入成功
		}

		KeyOfT kot; // 通过kot,把T类型的数据中的key取出来,然后在下面比较大小
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (kot(cur->_data) < kot(data)) // 如果data是key就用key比较大小可以;如果data是pair,用pair比较大小,不一定是我们想要的
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kot(cur->_data) > kot(data))
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return { Iterator(cur), false }; // 已经有这个值,插入失败
			}
		}

		// 新增节点必须为红色
		cur = new Node(data); 
		Node* newnode = cur; // cur在旋转时可能会变,用newnode保存一下
		cur->_col = RED;
		if (kot(parent->_data) < kot(data))
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;

		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;
			if (grandfather->_left == parent)
			{
				Node* uncle = grandfather->_right;
				// 叔叔存在且为红
				if (uncle && uncle->_col == RED)
				{
					// 变色+继续往上处理
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					cur = grandfather;
					parent = cur->_parent;
				}
				else // 叔叔不存在或者叔叔存在且为黑
				{
					// 单旋+变色
					if (cur == parent->_left)
					{
						RotateR(grandfather);

						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						// 双旋+变色
						RotateL(parent);
						RotateR(grandfather);

						cur->_col = BLACK;
						grandfather->_col = RED;
					}

					break;
				}
			}
			else
			{
				Node* uncle = grandfather->_left;
				// 叔叔存在且为红
				if (uncle && uncle->_col == RED)
				{
					// 变色+继续往上处理
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					cur = grandfather;
					parent = cur->_parent;
				}
				else // 叔叔不存在或者叔叔存在且为黑
				{
					// 单旋+变色
					if (cur == parent->_right)
					{
						RotateL(grandfather);

						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						// 双旋+变色
						RotateR(parent);
						RotateL(grandfather);

						cur->_col = BLACK;
						grandfather->_col = RED;
					}

					break;
				}
			}
		}

		// 无论最后根节点是否为黑,就直接置为黑
		_root->_col = BLACK;

		return { Iterator(newnode), true };
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		Node* parentParent = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}
			subL->_parent = parentParent;
		}
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;
		Node* parentParent = parent->_parent;
		subR->_left = parent;
		parent->_parent = subR;
		if (parentParent == nullptr)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parent == parentParent->_left)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}
			subR->_parent = parentParent;
		}
	}

	// 返回类型为迭代器,既可以查找也可以修改
	Iterator Find(const K& key)
	{
		KeyOfT kot;
		Node* cur = _root;
		while (cur)
		{
			if (kot(cur->_data) < key)
			{
				cur = cur->_right;
			}
			else if (kot(cur->_data) > key)
			{
				cur = cur->_left;
			}
			else
			{
				return Iterator(cur);
			}
		}

		return End();
	}
private:
	void Destroy(Node* root)
	{
		if (root == nullptr)
			return;
		Destroy(root->_left);
		Destroy(root->_right);
		delete root;
	}

private:
	Node* _root = nullptr;
};

结语

如有不足或改进之处,欢迎大家在评论区积极讨论,后续我也会持续更新C++相关的知识。文章制作不易,如果文章对你有帮助,就点赞收藏关注支持一下作者吧,让我们一起努力,共同进步!

相关推荐
执笔论英雄1 小时前
【RL】async_engine 远离
java·开发语言·网络
不会c嘎嘎1 小时前
【数据结构】红黑树详解:从原理到C++实现
开发语言·数据结构
pandarking1 小时前
[CTF]攻防世界:ics-05
开发语言·javascript·web安全·网络安全·ecmascript
却道天凉_好个秋1 小时前
c++ shared_ptr与unique_ptr总结
c++
执笔论英雄1 小时前
【RL]expand_requests干啥的
服务器·开发语言·python
kesifan1 小时前
JAVA线程的建立方法
java·开发语言·python
周杰伦fans1 小时前
C#中ValueTask
开发语言·c#
菠菠萝宝1 小时前
【Java手搓OpenManus】-5- 工具系统设计
java·开发语言·人工智能·openai·agent·manus
不知所云,1 小时前
4. vscode c++ 环境及工程搭建 clangd + mingw
c++·ide·vscode·开发环境·clangd